"test/training_service/nnitest/naive_test.py" did not exist on "0521a0c2fa6e64b63d46e1840f9fdbaec989704e"
imagenet_main.py 8.11 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
22
import sys
23
24
25

import tensorflow as tf

Karmel Allison's avatar
Karmel Allison committed
26
import resnet
27
28
import vgg_preprocessing

29
_DEFAULT_IMAGE_SIZE = 224
30
_NUM_CHANNELS = 3
31
_NUM_CLASSES = 1001
32

33
34
35
36
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
37

38
_NUM_TRAIN_FILES = 1024
39
_SHUFFLE_BUFFER = 1500
40

41

42
43
44
###############################################################################
# Data processing
###############################################################################
45
def get_filenames(is_training, data_dir):
46
47
48
  """Return filenames for dataset."""
  if is_training:
    return [
49
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
50
        for i in range(_NUM_TRAIN_FILES)]
51
52
  else:
    return [
53
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
54
        for i in range(128)]
55
56


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def _parse_example_proto(example_serialized):
  """Parses an Example proto containing a training example of an image.

  The dataset contains serialized Example protocol buffers.
  The Example proto is expected to contain features named
  image/encoded (a JPEG-encoded string) and image/class/label (int)

  Args:
    example_serialized: scalar Tensor tf.string containing a serialized
      Example protocol buffer.

  Returns:
    image_buffer: Tensor tf.string containing the contents of a JPEG file.
    label: Tensor tf.int64 containing the label.
  """
  # Dense features in Example proto.
  feature_map = {
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string,
                                          default_value=''),
      'image/class/label': tf.FixedLenFeature([1], dtype=tf.int64,
                                              default_value=-1)
78
79
  }

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
  features = tf.parse_single_example(example_serialized, feature_map)

  return features['image/encoded'], features['image/class/label']


def parse_record(raw_record, is_training):
  """Parses a record containing a training example of an image.

  The input record is parsed into a label and image, and the image is passed
  through preprocessing steps (cropping, flipping, and so on).

  Args:
    raw_record: scalar Tensor tf.string containing a serialized
      Example protocol buffer.
    is_training: A boolean denoting whether the input is for training.
95

96
97
98
99
  Returns:
    Tuple with processed image tensor and one-hot-encoded label tensor.
"""
  image, label = _parse_example_proto(raw_record)
100

101
102
103
104
105
106
107
108
  # Decode the string as an RGB JPEG.
  # Note that the resulting image contains an unknown height and width
  # that is set dynamically by decode_jpeg. In other words, the height
  # and width of image is unknown at compile-time.
  # Results in a 3-D int8 Tensor which we then convert to a float
  # with values ranging from [0, 1).
  image = tf.image.decode_jpeg(image, channels=_NUM_CHANNELS)
  image = tf.image.convert_image_dtype(image, tf.float32)
109

110
  image = vgg_preprocessing.preprocess_image(
111
      image=image,
112
113
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
114
115
      is_training=is_training)

116
117
  label = tf.cast(tf.reshape(label, shape=[]), dtype=tf.int32)
  label = tf.one_hot(label, _NUM_CLASSES)
118

119
  return image, label
120
121


122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def input_fn(is_training, data_dir, batch_size, num_epochs=1,
             num_parallel_calls=1):
  """Input function which provides batches for train or eval.
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
    num_parallel_calls: The number of records that are processed in parallel.
      This can be optimized per data set but for generally homogeneous data
      sets, should be approximately the number of available CPU cores.

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
139

140
  if is_training:
141
142
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
143

144
  # Convert to individual records
145
  dataset = dataset.flat_map(tf.data.TFRecordDataset)
146

147
148
  return resnet.process_record_dataset(dataset, is_training, batch_size,
      _SHUFFLE_BUFFER, parse_record, num_epochs, num_parallel_calls)
149
150


151
152
153
###############################################################################
# Running the model
###############################################################################
Karmel Allison's avatar
Karmel Allison committed
154
class ImagenetModel(resnet.Model):
155
156

  def __init__(self, resnet_size, data_format=None, num_classes=_NUM_CLASSES):
Neal Wu's avatar
Neal Wu committed
157
158
159
160
161
162
163
    """These are the parameters that work for Imagenet data.

    Args:
      resnet_size: The number of convolutional layers needed in the model.
      data_format: Either 'channels_first' or 'channels_last', specifying which
        data format to use when setting up the model.
      num_classes: The number of output classes needed from the model. This
164
        enables users to extend the same model to their own datasets.
Neal Wu's avatar
Neal Wu committed
165
    """
166
167
168

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
Karmel Allison's avatar
Karmel Allison committed
169
      block_fn = resnet.building_block
170
171
      final_size = 512
    else:
Karmel Allison's avatar
Karmel Allison committed
172
      block_fn = resnet.bottleneck_block
173
174
175
176
      final_size = 2048

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
177
        num_classes=num_classes,
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        second_pool_size=7,
        second_pool_stride=1,
        block_fn=block_fn,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
        final_size=final_size,
        data_format=data_format)


def _get_block_sizes(resnet_size):
  """The number of block layers used for the Resnet model varies according
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
204
205
  }

206
207
208
209
210
211
212
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
213
214


215
216
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
Karmel Allison's avatar
Karmel Allison committed
217
  learning_rate_fn = resnet.learning_rate_with_decay(
218
219
220
      batch_size=params['batch_size'], batch_denom=256,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])
221

Karmel Allison's avatar
Karmel Allison committed
222
223
224
225
226
227
228
  return resnet.resnet_model_fn(features, labels, mode, ImagenetModel,
                                resnet_size=params['resnet_size'],
                                weight_decay=1e-4,
                                learning_rate_fn=learning_rate_fn,
                                momentum=0.9,
                                data_format=params['data_format'],
                                loss_filter_fn=None)
229
230
231


def main(unused_argv):
Karmel Allison's avatar
Karmel Allison committed
232
  resnet.resnet_main(FLAGS, imagenet_model_fn, input_fn)
233
234
235
236


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
237

Karmel Allison's avatar
Karmel Allison committed
238
  parser = resnet.ResnetArgParser(
239
      resnet_size_choices=[18, 34, 50, 101, 152, 200])
240
241
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(argv=[sys.argv[0]] + unparsed)