inputs.py 18.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
from object_detection.core import preprocessor
29
30
31
32
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
from object_detection.protos import input_reader_pb2
33
from object_detection.protos import model_pb2
34
from object_detection.protos import train_pb2
35
from object_detection.utils import config_util
36
37
38
from object_detection.utils import dataset_util
from object_detection.utils import ops as util_ops

39
40
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
41
42
SERVING_FED_EXAMPLE_KEY = 'serialized_example'

43
44
45
46
47
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
}

48

49
50
51
52
53
54
55
56
57
58
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
                         retain_original_image=False):
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
59
60
61
62
63
64
  1. If key fields.InputDataFields.image_additional_channels is present in
     tensor_dict, the additional channels will be merged into
     fields.InputDataFields.image.
  2. data_augmentation_fn (optional): applied on tensor_dict.
  3. model_preprocess_fn: applied only on image tensor in tensor_dict.
  4. image_resizer_fn: applied on original image and instance mask tensor in
65
     tensor_dict.
66
67
  5. one_hot_encoding: applied to classes tensor in tensor_dict.
  6. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
68
69
70
71
72
73
74
75
76
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
77
78
79
80
    image_resizer_fn: image resizer function to apply on groundtruth instance
      `masks. This function must take a 3-D float tensor of an image and a 3-D
      tensor of instance masks and return a resized version of these along with
      the true shapes.
81
82
83
84
85
86
87
88
89
90
91
92
93
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
  """
94
95
96
97
98
  if fields.InputDataFields.image_additional_channels in tensor_dict:
    channels = tensor_dict[fields.InputDataFields.image_additional_channels]
    tensor_dict[fields.InputDataFields.image] = tf.concat(
        [tensor_dict[fields.InputDataFields.image], channels], axis=2)

99
  if retain_original_image:
100
    tensor_dict[fields.InputDataFields.original_image] = tf.cast(
101
        tensor_dict[fields.InputDataFields.image], tf.uint8)
102
103
104
105
106
107

  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
    tensor_dict = data_augmentation_fn(tensor_dict)

  # Apply model preprocessing ops and resize instance masks.
108
109
110
  image = tensor_dict[fields.InputDataFields.image]
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(
      tf.expand_dims(tf.to_float(image), axis=0))
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      preprocessed_resized_image, axis=0)
  tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
      true_image_shape, axis=0)
  if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
    masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
    _, resized_masks, _ = image_resizer_fn(image, masks)
    tensor_dict[fields.InputDataFields.
                groundtruth_instance_masks] = resized_masks

  # Transform groundtruth classes to one hot encodings.
  label_offset = 1
  zero_indexed_groundtruth_classes = tensor_dict[
      fields.InputDataFields.groundtruth_classes] - label_offset
  tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
      zero_indexed_groundtruth_classes, num_classes)

  if merge_multiple_boxes:
    merged_boxes, merged_classes, _ = util_ops.merge_boxes_with_multiple_labels(
        tensor_dict[fields.InputDataFields.groundtruth_boxes],
        zero_indexed_groundtruth_classes, num_classes)
    tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes

  return tensor_dict


def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
      tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
          include_instance_masks=include_instance_masks,
          include_keypoints=include_keypoints))
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def _get_labels_dict(input_dict):
  """Extracts labels dict from input dict."""
  required_label_keys = [
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.groundtruth_boxes,
      fields.InputDataFields.groundtruth_classes,
      fields.InputDataFields.groundtruth_weights
  ]
  labels_dict = {}
  for key in required_label_keys:
    labels_dict[key] = input_dict[key]

  optional_label_keys = [
      fields.InputDataFields.groundtruth_keypoints,
      fields.InputDataFields.groundtruth_instance_masks,
      fields.InputDataFields.groundtruth_area,
      fields.InputDataFields.groundtruth_is_crowd,
      fields.InputDataFields.groundtruth_difficult
  ]

  for key in optional_label_keys:
    if key in input_dict:
      labels_dict[key] = input_dict[key]
  if fields.InputDataFields.groundtruth_difficult in labels_dict:
    labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
        labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
  return labels_dict


def _get_features_dict(input_dict):
  """Extracts features dict from input dict."""
  hash_from_source_id = tf.string_to_hash_bucket_fast(
      input_dict[fields.InputDataFields.source_id], HASH_BINS)
  features = {
      fields.InputDataFields.image:
          input_dict[fields.InputDataFields.image],
      HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
      fields.InputDataFields.true_image_shape:
          input_dict[fields.InputDataFields.true_image_shape]
  }
  if fields.InputDataFields.original_image in input_dict:
    features[fields.InputDataFields.original_image] = input_dict[
        fields.InputDataFields.original_image]
  return features


214
215
def create_train_input_fn(train_config, train_input_config,
                          model_config):
216
217
218
219
220
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
221
    model_config: A model_pb2.DetectionModel.
222
223
224
225
226

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

227
  def _train_input_fn(params=None):
228
229
    """Returns `features` and `labels` tensor dictionaries for training.

230
231
232
    Args:
      params: Parameter dictionary passed from the estimator.

233
234
    Returns:
      features: Dictionary of feature tensors.
235
236
237
238
239
240
241
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
242
        features[fields.InputDataFields.original_image] (optional) is a
243
          [batch_size, H, W, C] float32 tensor with original images.
244
      labels: Dictionary of groundtruth tensors.
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
          int32 tensor indicating the number of groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_boxes] is a
          [batch_size, num_boxes, 4] float32 tensor containing the corners of
          the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [batch_size, num_boxes, num_classes] float32 one-hot tensor of
          classes.
        labels[fields.InputDataFields.groundtruth_weights] is a
          [batch_size, num_boxes] float32 tensor containing groundtruth weights
          for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [batch_size, num_boxes, H, W] float32 tensor containing only binary
          values, which represent instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
          keypoints for each box.
263
264

    Raises:
265
266
      TypeError: if the `train_config`, `train_input_config` or `model_config`
        are not of the correct type.
267
268
269
270
271
272
273
    """
    if not isinstance(train_config, train_pb2.TrainConfig):
      raise TypeError('For training mode, the `train_config` must be a '
                      'train_pb2.TrainConfig.')
    if not isinstance(train_input_config, input_reader_pb2.InputReader):
      raise TypeError('The `train_input_config` must be a '
                      'input_reader_pb2.InputReader.')
274
275
276
    if not isinstance(model_config, model_pb2.DetectionModel):
      raise TypeError('The `model_config` must be a '
                      'model_pb2.DetectionModel.')
277
278
279
280
281

    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
282
283
284
285
286
287
288
289
290
291
292
    data_augmentation_fn = functools.partial(
        augment_input_data, data_augmentation_options=data_augmentation_options)

    model = model_builder.build(model_config, is_training=True)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=config_util.get_number_of_classes(model_config),
293
294
        data_augmentation_fn=data_augmentation_fn,
        retain_original_image=train_config.retain_original_images)
295
    dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
296
297
298
299
300
301
302
        train_input_config,
        transform_input_data_fn=transform_data_fn,
        batch_size=params['batch_size'] if params else train_config.batch_size,
        max_num_boxes=train_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
303
304
    input_dict = dataset_util.make_initializable_iterator(dataset).get_next()
    return (_get_features_dict(input_dict), _get_labels_dict(input_dict))
305
306
307
308

  return _train_input_fn


309
def create_eval_input_fn(eval_config, eval_input_config, model_config):
310
311
312
313
314
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
315
    model_config: A model_pb2.DetectionModel.
316
317
318
319
320

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

321
  def _eval_input_fn(params=None):
322
323
    """Returns `features` and `labels` tensor dictionaries for evaluation.

324
325
326
    Args:
      params: Parameter dictionary passed from the estimator.

327
328
    Returns:
      features: Dictionary of feature tensors.
329
330
331
332
333
334
335
336
337
        features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
          with preprocessed images.
        features[HASH_KEY] is a [1] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [1, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] is a [1, H', W', C]
          float32 tensor with the original image.
338
      labels: Dictionary of groundtruth tensors.
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
          float32 tensor containing the corners of the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [num_boxes, num_classes] float32 one-hot tensor of classes.
        labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
          float32 tensor containing object areas.
        labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
          bool tensor indicating if the boxes enclose a crowd.
        labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
          int32 tensor indicating if the boxes represent difficult instances.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [1, num_boxes, H, W] float32 tensor containing only binary values,
          which represent instance masks for objects.
353
354

    Raises:
355
356
      TypeError: if the `eval_config`, `eval_input_config` or `model_config`
        are not of the correct type.
357
    """
358
    params = params or {}
359
360
    if not isinstance(eval_config, eval_pb2.EvalConfig):
      raise TypeError('For eval mode, the `eval_config` must be a '
361
                      'train_pb2.EvalConfig.')
362
363
364
    if not isinstance(eval_input_config, input_reader_pb2.InputReader):
      raise TypeError('The `eval_input_config` must be a '
                      'input_reader_pb2.InputReader.')
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    if not isinstance(model_config, model_pb2.DetectionModel):
      raise TypeError('The `model_config` must be a '
                      'model_pb2.DetectionModel.')

    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
379
        retain_original_image=eval_config.retain_original_images)
380
381
382
    dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
        eval_input_config,
        transform_input_data_fn=transform_data_fn,
383
        batch_size=params.get('batch_size', 1),
384
385
386
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
387
388
    input_dict = dataset_util.make_initializable_iterator(dataset).get_next()

389
    return (_get_features_dict(input_dict), _get_labels_dict(input_dict))
390
391
392
393

  return _eval_input_fn


394
def create_predict_input_fn(model_config):
395
396
  """Creates a predict `input` function for `Estimator`.

397
398
399
  Args:
    model_config: A model_pb2.DetectionModel.

400
401
402
403
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

404
  def _predict_input_fn(params=None):
405
406
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

407
408
409
    Args:
      params: Parameter dictionary passed from the estimator.

410
411
412
    Returns:
      `ServingInputReceiver`.
    """
413
    del params
414
415
    example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature')

416
417
418
419
    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
420

421
422
423
424
425
426
427
428
    transform_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

    decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False)
    input_dict = transform_fn(decoder.decode(example))
429
430
    images = tf.to_float(input_dict[fields.InputDataFields.image])
    images = tf.expand_dims(images, axis=0)
431
432
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
433
434

    return tf.estimator.export.ServingInputReceiver(
435
436
437
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
438
439
440
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn