inputs.py 18.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
from object_detection.core import preprocessor
29
30
31
32
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
from object_detection.protos import input_reader_pb2
33
from object_detection.protos import model_pb2
34
from object_detection.protos import train_pb2
35
from object_detection.utils import config_util
36
37
38
from object_detection.utils import dataset_util
from object_detection.utils import ops as util_ops

39
40
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
41
42
SERVING_FED_EXAMPLE_KEY = 'serialized_example'

43
44
45
46
47
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
}

48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
                         retain_original_image=False):
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
  1. data_augmentation_fn (optional): applied on tensor_dict.
  2. model_preprocess_fn: applied only on image tensor in tensor_dict.
  3. image_resizer_fn: applied only on instance mask tensor in tensor_dict.
  4. one_hot_encoding: applied to classes tensor in tensor_dict.
  5. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
    image_resizer_fn: image resizer function to apply on groundtruth instance
      masks. This function must take a 4-D float tensor of image and a 4-D
      tensor of instances masks and return resized version of these along with
      the true shapes.
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
  """
  if retain_original_image:
    tensor_dict[fields.InputDataFields.
                original_image] = tensor_dict[fields.InputDataFields.image]

  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
    tensor_dict = data_augmentation_fn(tensor_dict)

  # Apply model preprocessing ops and resize instance masks.
  image = tf.expand_dims(
      tf.to_float(tensor_dict[fields.InputDataFields.image]), axis=0)
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(image)
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      preprocessed_resized_image, axis=0)
  tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
      true_image_shape, axis=0)
  if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
    masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
    _, resized_masks, _ = image_resizer_fn(image, masks)
    tensor_dict[fields.InputDataFields.
                groundtruth_instance_masks] = resized_masks

  # Transform groundtruth classes to one hot encodings.
  label_offset = 1
  zero_indexed_groundtruth_classes = tensor_dict[
      fields.InputDataFields.groundtruth_classes] - label_offset
  tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
      zero_indexed_groundtruth_classes, num_classes)

  if merge_multiple_boxes:
    merged_boxes, merged_classes, _ = util_ops.merge_boxes_with_multiple_labels(
        tensor_dict[fields.InputDataFields.groundtruth_boxes],
        zero_indexed_groundtruth_classes, num_classes)
    tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes

  return tensor_dict


def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
      tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
          include_instance_masks=include_instance_masks,
          include_keypoints=include_keypoints))
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


def create_train_input_fn(train_config, train_input_config,
                          model_config):
161
162
163
164
165
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
166
    model_config: A model_pb2.DetectionModel.
167
168
169
170
171

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

172
  def _train_input_fn(params=None):
173
174
    """Returns `features` and `labels` tensor dictionaries for training.

175
176
177
    Args:
      params: Parameter dictionary passed from the estimator.

178
179
    Returns:
      features: Dictionary of feature tensors.
180
181
182
183
184
185
186
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
187
      labels: Dictionary of groundtruth tensors.
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
        labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
          int32 tensor indicating the number of groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_boxes] is a
          [batch_size, num_boxes, 4] float32 tensor containing the corners of
          the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [batch_size, num_boxes, num_classes] float32 one-hot tensor of
          classes.
        labels[fields.InputDataFields.groundtruth_weights] is a
          [batch_size, num_boxes] float32 tensor containing groundtruth weights
          for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [batch_size, num_boxes, H, W] float32 tensor containing only binary
          values, which represent instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
          keypoints for each box.
206
207

    Raises:
208
209
      TypeError: if the `train_config`, `train_input_config` or `model_config`
        are not of the correct type.
210
211
212
213
214
215
216
    """
    if not isinstance(train_config, train_pb2.TrainConfig):
      raise TypeError('For training mode, the `train_config` must be a '
                      'train_pb2.TrainConfig.')
    if not isinstance(train_input_config, input_reader_pb2.InputReader):
      raise TypeError('The `train_input_config` must be a '
                      'input_reader_pb2.InputReader.')
217
218
219
    if not isinstance(model_config, model_pb2.DetectionModel):
      raise TypeError('The `model_config` must be a '
                      'model_pb2.DetectionModel.')
220
221
222
223
224

    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
225
226
227
228
229
230
231
232
233
234
235
236
    data_augmentation_fn = functools.partial(
        augment_input_data, data_augmentation_options=data_augmentation_options)

    model = model_builder.build(model_config, is_training=True)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=config_util.get_number_of_classes(model_config),
        data_augmentation_fn=data_augmentation_fn)
237
    dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
238
239
240
241
242
243
244
245
246
247
248
        train_input_config,
        transform_input_data_fn=transform_data_fn,
        batch_size=params['batch_size'] if params else train_config.batch_size,
        max_num_boxes=train_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
    tensor_dict = dataset_util.make_initializable_iterator(dataset).get_next()

    hash_from_source_id = tf.string_to_hash_bucket_fast(
        tensor_dict[fields.InputDataFields.source_id], HASH_BINS)
249
    features = {
250
251
252
253
        fields.InputDataFields.image: tensor_dict[fields.InputDataFields.image],
        HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
        fields.InputDataFields.true_image_shape: tensor_dict[
            fields.InputDataFields.true_image_shape]
254
    }
255

256
    labels = {
257
258
259
260
261
262
263
264
        fields.InputDataFields.num_groundtruth_boxes: tensor_dict[
            fields.InputDataFields.num_groundtruth_boxes],
        fields.InputDataFields.groundtruth_boxes: tensor_dict[
            fields.InputDataFields.groundtruth_boxes],
        fields.InputDataFields.groundtruth_classes: tensor_dict[
            fields.InputDataFields.groundtruth_classes],
        fields.InputDataFields.groundtruth_weights: tensor_dict[
            fields.InputDataFields.groundtruth_weights]
265
    }
266
267
268
269
270
271
    if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
      labels[fields.InputDataFields.groundtruth_keypoints] = tensor_dict[
          fields.InputDataFields.groundtruth_keypoints]
    if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
      labels[fields.InputDataFields.groundtruth_instance_masks] = tensor_dict[
          fields.InputDataFields.groundtruth_instance_masks]
272
273
274
275
276
277

    return features, labels

  return _train_input_fn


278
def create_eval_input_fn(eval_config, eval_input_config, model_config):
279
280
281
282
283
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
284
    model_config: A model_pb2.DetectionModel.
285
286
287
288
289

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

290
  def _eval_input_fn(params=None):
291
292
    """Returns `features` and `labels` tensor dictionaries for evaluation.

293
294
295
    Args:
      params: Parameter dictionary passed from the estimator.

296
297
    Returns:
      features: Dictionary of feature tensors.
298
299
300
301
302
303
304
305
306
        features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
          with preprocessed images.
        features[HASH_KEY] is a [1] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [1, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] is a [1, H', W', C]
          float32 tensor with the original image.
307
      labels: Dictionary of groundtruth tensors.
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
          float32 tensor containing the corners of the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [num_boxes, num_classes] float32 one-hot tensor of classes.
        labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
          float32 tensor containing object areas.
        labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
          bool tensor indicating if the boxes enclose a crowd.
        labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
          int32 tensor indicating if the boxes represent difficult instances.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [1, num_boxes, H, W] float32 tensor containing only binary values,
          which represent instance masks for objects.
322
323

    Raises:
324
325
      TypeError: if the `eval_config`, `eval_input_config` or `model_config`
        are not of the correct type.
326
    """
327
    del params
328
329
    if not isinstance(eval_config, eval_pb2.EvalConfig):
      raise TypeError('For eval mode, the `eval_config` must be a '
330
                      'train_pb2.EvalConfig.')
331
332
333
    if not isinstance(eval_input_config, input_reader_pb2.InputReader):
      raise TypeError('The `eval_input_config` must be a '
                      'input_reader_pb2.InputReader.')
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    if not isinstance(model_config, model_pb2.DetectionModel):
      raise TypeError('The `model_config` must be a '
                      'model_pb2.DetectionModel.')

    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
        retain_original_image=True)
349
350
351
352
353
354
355
    dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
        eval_input_config,
        transform_input_data_fn=transform_data_fn,
        batch_size=1,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
356
357
358
359
360
361
362
363
364
365
366
367
368
    input_dict = dataset_util.make_initializable_iterator(dataset).get_next()

    hash_from_source_id = tf.string_to_hash_bucket_fast(
        input_dict[fields.InputDataFields.source_id], HASH_BINS)
    features = {
        fields.InputDataFields.image:
            input_dict[fields.InputDataFields.image],
        fields.InputDataFields.original_image:
            input_dict[fields.InputDataFields.original_image],
        HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
        fields.InputDataFields.true_image_shape:
            input_dict[fields.InputDataFields.true_image_shape]
    }
369

370
371
372
373
374
375
376
377
378
379
380
381
382
    labels = {
        fields.InputDataFields.groundtruth_boxes:
            input_dict[fields.InputDataFields.groundtruth_boxes],
        fields.InputDataFields.groundtruth_classes:
            input_dict[fields.InputDataFields.groundtruth_classes],
        fields.InputDataFields.groundtruth_area:
            input_dict[fields.InputDataFields.groundtruth_area],
        fields.InputDataFields.groundtruth_is_crowd:
            input_dict[fields.InputDataFields.groundtruth_is_crowd],
        fields.InputDataFields.groundtruth_difficult:
            tf.cast(input_dict[fields.InputDataFields.groundtruth_difficult],
                    tf.int32)
    }
383
    if fields.InputDataFields.groundtruth_instance_masks in input_dict:
384
385
386
      labels[fields.InputDataFields.groundtruth_instance_masks] = input_dict[
          fields.InputDataFields.groundtruth_instance_masks]

387
388
389
390
391
    return features, labels

  return _eval_input_fn


392
def create_predict_input_fn(model_config):
393
394
  """Creates a predict `input` function for `Estimator`.

395
396
397
  Args:
    model_config: A model_pb2.DetectionModel.

398
399
400
401
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

402
  def _predict_input_fn(params=None):
403
404
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

405
406
407
    Args:
      params: Parameter dictionary passed from the estimator.

408
409
410
    Returns:
      `ServingInputReceiver`.
    """
411
    del params
412
413
    example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature')

414
415
416
417
    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
418

419
420
421
422
423
424
425
426
    transform_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

    decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False)
    input_dict = transform_fn(decoder.decode(example))
427
428
    images = tf.to_float(input_dict[fields.InputDataFields.image])
    images = tf.expand_dims(images, axis=0)
429
430
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
431
432

    return tf.estimator.export.ServingInputReceiver(
433
434
435
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
436
437
438
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn