inputs.py 18.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
from object_detection.core import preprocessor
29
30
31
32
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
from object_detection.protos import input_reader_pb2
33
from object_detection.protos import model_pb2
34
from object_detection.protos import train_pb2
35
from object_detection.utils import config_util
36
37
38
from object_detection.utils import dataset_util
from object_detection.utils import ops as util_ops

39
40
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
41
42
SERVING_FED_EXAMPLE_KEY = 'serialized_example'

43
44
45
46
47
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
}

48

49
50
51
52
53
54
55
56
57
58
59
60
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
                         retain_original_image=False):
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
  1. data_augmentation_fn (optional): applied on tensor_dict.
  2. model_preprocess_fn: applied only on image tensor in tensor_dict.
61
62
  3. image_resizer_fn: applied on original image and instance mask tensor in
     tensor_dict.
63
64
65
66
67
68
69
70
71
72
73
  4. one_hot_encoding: applied to classes tensor in tensor_dict.
  5. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
74
75
76
77
78
    image_resizer_fn: image resizer function to apply on original image (if
      `retain_original_image` is True) and groundtruth instance masks. This
      function must take a 3-D float tensor of an image and a 3-D tensor of
      instance masks and return a resized version of these along with the true
      shapes.
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
  """
  if retain_original_image:
93
94
95
96
    original_image_resized, _ = image_resizer_fn(
        tensor_dict[fields.InputDataFields.image])
    tensor_dict[fields.InputDataFields.original_image] = tf.cast(
        original_image_resized, tf.uint8)
97
98
99
100
101
102

  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
    tensor_dict = data_augmentation_fn(tensor_dict)

  # Apply model preprocessing ops and resize instance masks.
103
104
105
  image = tensor_dict[fields.InputDataFields.image]
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(
      tf.expand_dims(tf.to_float(image), axis=0))
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      preprocessed_resized_image, axis=0)
  tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
      true_image_shape, axis=0)
  if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
    masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
    _, resized_masks, _ = image_resizer_fn(image, masks)
    tensor_dict[fields.InputDataFields.
                groundtruth_instance_masks] = resized_masks

  # Transform groundtruth classes to one hot encodings.
  label_offset = 1
  zero_indexed_groundtruth_classes = tensor_dict[
      fields.InputDataFields.groundtruth_classes] - label_offset
  tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
      zero_indexed_groundtruth_classes, num_classes)

  if merge_multiple_boxes:
    merged_boxes, merged_classes, _ = util_ops.merge_boxes_with_multiple_labels(
        tensor_dict[fields.InputDataFields.groundtruth_boxes],
        zero_indexed_groundtruth_classes, num_classes)
    tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes

  return tensor_dict


def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
      tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
          include_instance_masks=include_instance_masks,
          include_keypoints=include_keypoints))
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
def _get_labels_dict(input_dict):
  """Extracts labels dict from input dict."""
  required_label_keys = [
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.groundtruth_boxes,
      fields.InputDataFields.groundtruth_classes,
      fields.InputDataFields.groundtruth_weights
  ]
  labels_dict = {}
  for key in required_label_keys:
    labels_dict[key] = input_dict[key]

  optional_label_keys = [
      fields.InputDataFields.groundtruth_keypoints,
      fields.InputDataFields.groundtruth_instance_masks,
      fields.InputDataFields.groundtruth_area,
      fields.InputDataFields.groundtruth_is_crowd,
      fields.InputDataFields.groundtruth_difficult
  ]

  for key in optional_label_keys:
    if key in input_dict:
      labels_dict[key] = input_dict[key]
  if fields.InputDataFields.groundtruth_difficult in labels_dict:
    labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
        labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
  return labels_dict


def _get_features_dict(input_dict):
  """Extracts features dict from input dict."""
  hash_from_source_id = tf.string_to_hash_bucket_fast(
      input_dict[fields.InputDataFields.source_id], HASH_BINS)
  features = {
      fields.InputDataFields.image:
          input_dict[fields.InputDataFields.image],
      HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
      fields.InputDataFields.true_image_shape:
          input_dict[fields.InputDataFields.true_image_shape]
  }
  if fields.InputDataFields.original_image in input_dict:
    features[fields.InputDataFields.original_image] = input_dict[
        fields.InputDataFields.original_image]
  return features


209
210
def create_train_input_fn(train_config, train_input_config,
                          model_config):
211
212
213
214
215
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
216
    model_config: A model_pb2.DetectionModel.
217
218
219
220
221

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

222
  def _train_input_fn(params=None):
223
224
    """Returns `features` and `labels` tensor dictionaries for training.

225
226
227
    Args:
      params: Parameter dictionary passed from the estimator.

228
229
    Returns:
      features: Dictionary of feature tensors.
230
231
232
233
234
235
236
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
237
238
        features[fields.InputDataFields.image] (optional) is a
          [batch_size, H, W, C] float32 tensor with original images.
239
      labels: Dictionary of groundtruth tensors.
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
          int32 tensor indicating the number of groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_boxes] is a
          [batch_size, num_boxes, 4] float32 tensor containing the corners of
          the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [batch_size, num_boxes, num_classes] float32 one-hot tensor of
          classes.
        labels[fields.InputDataFields.groundtruth_weights] is a
          [batch_size, num_boxes] float32 tensor containing groundtruth weights
          for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [batch_size, num_boxes, H, W] float32 tensor containing only binary
          values, which represent instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
          keypoints for each box.
258
259

    Raises:
260
261
      TypeError: if the `train_config`, `train_input_config` or `model_config`
        are not of the correct type.
262
263
264
265
266
267
268
    """
    if not isinstance(train_config, train_pb2.TrainConfig):
      raise TypeError('For training mode, the `train_config` must be a '
                      'train_pb2.TrainConfig.')
    if not isinstance(train_input_config, input_reader_pb2.InputReader):
      raise TypeError('The `train_input_config` must be a '
                      'input_reader_pb2.InputReader.')
269
270
271
    if not isinstance(model_config, model_pb2.DetectionModel):
      raise TypeError('The `model_config` must be a '
                      'model_pb2.DetectionModel.')
272
273
274
275
276

    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
277
278
279
280
281
282
283
284
285
286
287
    data_augmentation_fn = functools.partial(
        augment_input_data, data_augmentation_options=data_augmentation_options)

    model = model_builder.build(model_config, is_training=True)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=config_util.get_number_of_classes(model_config),
288
289
        data_augmentation_fn=data_augmentation_fn,
        retain_original_image=train_config.retain_original_images)
290
    dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
291
292
293
294
295
296
297
        train_input_config,
        transform_input_data_fn=transform_data_fn,
        batch_size=params['batch_size'] if params else train_config.batch_size,
        max_num_boxes=train_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
298
299
    input_dict = dataset_util.make_initializable_iterator(dataset).get_next()
    return (_get_features_dict(input_dict), _get_labels_dict(input_dict))
300
301
302
303

  return _train_input_fn


304
def create_eval_input_fn(eval_config, eval_input_config, model_config):
305
306
307
308
309
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
310
    model_config: A model_pb2.DetectionModel.
311
312
313
314
315

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

316
  def _eval_input_fn(params=None):
317
318
    """Returns `features` and `labels` tensor dictionaries for evaluation.

319
320
321
    Args:
      params: Parameter dictionary passed from the estimator.

322
323
    Returns:
      features: Dictionary of feature tensors.
324
325
326
327
328
329
330
331
332
        features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
          with preprocessed images.
        features[HASH_KEY] is a [1] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [1, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] is a [1, H', W', C]
          float32 tensor with the original image.
333
      labels: Dictionary of groundtruth tensors.
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
          float32 tensor containing the corners of the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [num_boxes, num_classes] float32 one-hot tensor of classes.
        labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
          float32 tensor containing object areas.
        labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
          bool tensor indicating if the boxes enclose a crowd.
        labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
          int32 tensor indicating if the boxes represent difficult instances.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [1, num_boxes, H, W] float32 tensor containing only binary values,
          which represent instance masks for objects.
348
349

    Raises:
350
351
      TypeError: if the `eval_config`, `eval_input_config` or `model_config`
        are not of the correct type.
352
    """
353
    del params
354
355
    if not isinstance(eval_config, eval_pb2.EvalConfig):
      raise TypeError('For eval mode, the `eval_config` must be a '
356
                      'train_pb2.EvalConfig.')
357
358
359
    if not isinstance(eval_input_config, input_reader_pb2.InputReader):
      raise TypeError('The `eval_input_config` must be a '
                      'input_reader_pb2.InputReader.')
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    if not isinstance(model_config, model_pb2.DetectionModel):
      raise TypeError('The `model_config` must be a '
                      'model_pb2.DetectionModel.')

    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
374
        retain_original_image=eval_config.retain_original_images)
375
376
377
378
379
380
381
    dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
        eval_input_config,
        transform_input_data_fn=transform_data_fn,
        batch_size=1,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
            image_resizer_config))
382
383
    input_dict = dataset_util.make_initializable_iterator(dataset).get_next()

384
    return (_get_features_dict(input_dict), _get_labels_dict(input_dict))
385
386
387
388

  return _eval_input_fn


389
def create_predict_input_fn(model_config):
390
391
  """Creates a predict `input` function for `Estimator`.

392
393
394
  Args:
    model_config: A model_pb2.DetectionModel.

395
396
397
398
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

399
  def _predict_input_fn(params=None):
400
401
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

402
403
404
    Args:
      params: Parameter dictionary passed from the estimator.

405
406
407
    Returns:
      `ServingInputReceiver`.
    """
408
    del params
409
410
    example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature')

411
412
413
414
    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
415

416
417
418
419
420
421
422
423
    transform_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

    decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False)
    input_dict = transform_fn(decoder.decode(example))
424
425
    images = tf.to_float(input_dict[fields.InputDataFields.image])
    images = tf.expand_dims(images, axis=0)
426
427
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
428
429

    return tf.estimator.export.ServingInputReceiver(
430
431
432
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
433
434
435
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn