transformer.py 17.9 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Hongkun Yu's avatar
Hongkun Yu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Hongkun Yu's avatar
Hongkun Yu committed
15
"""Keras-based transformer block layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17

Chen Chen's avatar
Chen Chen committed
18
import gin
Hongkun Yu's avatar
Hongkun Yu committed
19
20
21
import tensorflow as tf

from official.nlp.modeling.layers import attention
22
from official.nlp.modeling.layers import multi_channel_attention
23
from official.nlp.modeling.layers import transformer_encoder_block
24
from official.nlp.modeling.layers.util import tf_function_if_eager
Hongkun Yu's avatar
Hongkun Yu committed
25
26
27


@tf.keras.utils.register_keras_serializable(package="Text")
28
class Transformer(transformer_encoder_block.TransformerEncoderBlock):
Hongkun Yu's avatar
Hongkun Yu committed
29
30
31
32
33
  """Transformer layer.

  This layer implements the Transformer from "Attention Is All You Need".
  (https://arxiv.org/abs/1706.03762).

34
  Args:
Hongkun Yu's avatar
Hongkun Yu committed
35
36
37
38
39
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
40
41
    output_range: the sequence output range, [0, output_range) by slicing the
      target sequence. `None` means the target sequence is not sliced.
Hongkun Yu's avatar
Hongkun Yu committed
42
43
44
45
46
47
48
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
49
50
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
51
    norm_first: Whether to normalize inputs to attention and intermediate dense
52
53
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
54
    norm_epsilon: Epsilon value to initialize normalization layers.
55
    intermediate_dropout: Dropout probability for intermediate_dropout_layer.
xinliupitt's avatar
xinliupitt committed
56
57
    attention_initializer: Initializer for kernels of attention layers. If set
      `None`, attention layers use kernel_initializer as initializer for kernel.
Hongkun Yu's avatar
Hongkun Yu committed
58
59
60
61
62
63
64
65
  """

  def __init__(self,
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
66
               output_range=None,
Hongkun Yu's avatar
Hongkun Yu committed
67
68
69
70
71
72
73
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
74
75
76
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
77
               intermediate_dropout=0.0,
xinliupitt's avatar
xinliupitt committed
78
               attention_initializer=None,
Hongkun Yu's avatar
Hongkun Yu committed
79
               **kwargs):
80
    super().__init__(
Zhenyu Tan's avatar
Zhenyu Tan committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        num_attention_heads=num_attention_heads,
        inner_dim=intermediate_size,
        inner_activation=intermediate_activation,
        output_dropout=dropout_rate,
        attention_dropout=attention_dropout_rate,
        output_range=output_range,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        use_bias=use_bias,
        norm_first=norm_first,
        norm_epsilon=norm_epsilon,
        inner_dropout=intermediate_dropout,
        attention_initializer=attention_initializer,
        **kwargs)
100

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
101
102
103
104
105
106
107
108
109
  def get_config(self):
    return {
        "num_attention_heads":
            self._num_heads,
        "intermediate_size":
            self._inner_dim,
        "intermediate_activation":
            self._inner_activation,
        "dropout_rate":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
            self._output_dropout_rate,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        "attention_dropout_rate":
            self._attention_dropout_rate,
        "output_range":
            self._output_range,
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
            self._norm_epsilon,
        "intermediate_dropout":
            self._inner_dropout,
        "attention_initializer":
            tf.keras.initializers.serialize(self._attention_initializer)
    }

141

Chen Chen's avatar
Chen Chen committed
142
143
@tf.keras.utils.register_keras_serializable(package="Text")
@gin.configurable
144
145
146
147
class CompiledTransformer(Transformer):

  @tf_function_if_eager(experimental_compile=True)
  def call(self, inputs):
148
    return super().call(inputs)
149
150
151


@tf.keras.utils.register_keras_serializable(package="Text")
Hongkun Yu's avatar
Hongkun Yu committed
152
class TransformerDecoderBlock(tf.keras.layers.Layer):
153
154
155
156
157
158
  """Single transformer layer for decoder.

  It has three sub-layers:
  (1) a multi-head self-attention mechanism.
  (2) a encoder-decoder attention.
  (3) a positionwise fully connected feed-forward network.
Hongkun Yu's avatar
Hongkun Yu committed
159

160
  Args:
Hongkun Yu's avatar
Hongkun Yu committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
    multi_channel_cross_attention: Whether to use `MultiChannelAttention` for
      cross-attention between target sequences and source sequences.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
175
176
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
177
    norm_first: Whether to normalize inputs to attention and intermediate dense
178
179
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
180
    norm_epsilon: Epsilon value to initialize normalization layers.
181
    intermediate_dropout: Dropout probability for intermediate_dropout_layer.
xinliupitt's avatar
xinliupitt committed
182
183
    attention_initializer: Initializer for kernels of attention layers. If set
      `None`, attention layers use kernel_initializer as initializer for kernel.
184
185
186
  """

  def __init__(self,
Hongkun Yu's avatar
Hongkun Yu committed
187
188
189
190
191
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
192
               multi_channel_cross_attention=False,
Hongkun Yu's avatar
Hongkun Yu committed
193
194
195
196
197
198
199
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
200
201
202
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
203
               intermediate_dropout=0.0,
xinliupitt's avatar
xinliupitt committed
204
               attention_initializer=None,
205
               **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
206
    super().__init__(**kwargs)
207
208
209
210
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
    self.intermediate_activation = tf.keras.activations.get(
        intermediate_activation)
Hongkun Yu's avatar
Hongkun Yu committed
211
212
    self.dropout_rate = dropout_rate
    self.attention_dropout_rate = attention_dropout_rate
213
    self.multi_channel_cross_attention = multi_channel_cross_attention
Hongkun Yu's avatar
Hongkun Yu committed
214
215
216
217
218
219
220
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
221
222
223
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
xinliupitt's avatar
xinliupitt committed
224
    self._intermediate_dropout = intermediate_dropout
xinliupitt's avatar
xinliupitt committed
225
    if attention_initializer:
xinliupitt's avatar
xinliupitt committed
226
227
      self._attention_initializer = tf.keras.initializers.get(
          attention_initializer)
xinliupitt's avatar
xinliupitt committed
228
229
    else:
      self._attention_initializer = self._kernel_initializer
230
231
232
233
234
    if self.multi_channel_cross_attention:
      self._cross_attention_cls = multi_channel_attention.MultiChannelAttention
    else:
      self._cross_attention_cls = attention.MultiHeadAttention

Hongkun Yu's avatar
Hongkun Yu committed
235
236
  def build(self, input_shape):
    target_tensor_shape = tf.TensorShape(input_shape[0])
237
    if len(target_tensor_shape.as_list()) != 3:
Hongkun Yu's avatar
Hongkun Yu committed
238
239
240
241
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    hidden_size = target_tensor_shape[2]
    if hidden_size % self.num_attention_heads != 0:
242
243
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
Hongkun Yu's avatar
Hongkun Yu committed
244
          "heads (%d)" % (hidden_size, self.num_attention_heads))
245
    self.attention_head_size = int(hidden_size) // self.num_attention_heads
246
    common_kwargs = dict(
247
        bias_initializer=self._bias_initializer,
Hongkun Yu's avatar
Hongkun Yu committed
248
249
250
251
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
252
253
254
255
        bias_constraint=self._bias_constraint)
    # Self attention.
    self.self_attention = attention.CachedAttention(
        num_heads=self.num_attention_heads,
256
        key_dim=self.attention_head_size,
257
        dropout=self.attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
258
        use_bias=self._use_bias,
xinliupitt's avatar
xinliupitt committed
259
        kernel_initializer=self._attention_initializer,
260
261
262
263
264
265
        name="self_attention",
        **common_kwargs)
    self.self_attention_output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
266
        kernel_initializer=self._kernel_initializer,
267
268
        name="output",
        **common_kwargs)
269
    self.self_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
270
        rate=self.dropout_rate)
271
272
    self.self_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
273
            name="self_attention_layer_norm",
274
            axis=-1,
275
276
            epsilon=self._norm_epsilon,
            dtype="float32"))
277
278
279
    # Encoder-decoder attention.
    self.encdec_attention = self._cross_attention_cls(
        num_heads=self.num_attention_heads,
280
        key_dim=self.attention_head_size,
Hongkun Yu's avatar
Hongkun Yu committed
281
282
        dropout=self.attention_dropout_rate,
        output_shape=hidden_size,
xinliupitt's avatar
xinliupitt committed
283
        use_bias=self._use_bias,
xinliupitt's avatar
xinliupitt committed
284
        kernel_initializer=self._attention_initializer,
285
286
        name="attention/encdec",
        **common_kwargs)
287
288

    self.encdec_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
289
        rate=self.dropout_rate)
290
291
    self.encdec_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
292
            name="attention/encdec_output_layer_norm",
293
            axis=-1,
294
295
            epsilon=self._norm_epsilon,
            dtype="float32"))
296
297

    # Feed-forward projection.
298
299
300
301
    self.intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self.intermediate_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
302
        kernel_initializer=self._kernel_initializer,
303
304
        name="intermediate",
        **common_kwargs)
305
306
    self.intermediate_activation_layer = tf.keras.layers.Activation(
        self.intermediate_activation)
307
308
    self._intermediate_dropout_layer = tf.keras.layers.Dropout(
        rate=self._intermediate_dropout)
309
310
311
312
    self.output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
313
        kernel_initializer=self._kernel_initializer,
314
315
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
316
    self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
317
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
318
319
320
321
        name="output_layer_norm",
        axis=-1,
        epsilon=self._norm_epsilon,
        dtype="float32")
Hongkun Yu's avatar
Hongkun Yu committed
322
    super().build(input_shape)
323

xinliupitt's avatar
xinliupitt committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
  def get_config(self):
    config = {
        "num_attention_heads":
            self.num_attention_heads,
        "intermediate_size":
            self.intermediate_size,
        "intermediate_activation":
            self.intermediate_activation,
        "dropout_rate":
            self.dropout_rate,
        "attention_dropout_rate":
            self.attention_dropout_rate,
        "multi_channel_cross_attention":
            self.multi_channel_cross_attention,
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
xinliupitt's avatar
xinliupitt committed
357
358
            self._norm_epsilon,
        "intermediate_dropout":
xinliupitt's avatar
xinliupitt committed
359
360
            self._intermediate_dropout,
        "attention_initializer":
xinliupitt's avatar
xinliupitt committed
361
            tf.keras.initializers.serialize(self._attention_initializer)
xinliupitt's avatar
xinliupitt committed
362
    }
Hongkun Yu's avatar
Hongkun Yu committed
363
    base_config = super().get_config()
xinliupitt's avatar
xinliupitt committed
364
365
    return dict(list(base_config.items()) + list(config.items()))

366
367
368
369
370
371
372
  def common_layers_with_encoder(self):
    """Gets layer objects that can make a Transformer encoder block."""
    return [
        self.self_attention, self.self_attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_layer_norm
    ]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
373
374
375
  def call(self, inputs, cache=None, decode_loop_step=None):
    if self.multi_channel_cross_attention:
      if len(inputs) != 5:
376
        raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
377
            "TransformerDecoderBlock must have 5 inputs, when it uses "
378
            "multi_channel_cross_attention. But it got: %d" % len(inputs))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
379
380
381
382
383
    elif len(inputs) != 4:
      raise ValueError(
          "TransformerDecoderBlock must have 4 inputs, but it got: %d" %
          len(inputs))
    input_tensor, memory, attention_mask, self_attention_mask = inputs[:4]
xinliupitt's avatar
xinliupitt committed
384
385
386
    source_tensor = input_tensor
    if self._norm_first:
      input_tensor = self.self_attention_layer_norm(input_tensor)
387
    self_attention_output, cache = self.self_attention(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
388
        query=input_tensor,
389
        value=input_tensor,
390
391
392
393
        attention_mask=self_attention_mask,
        cache=cache,
        decode_loop_step=decode_loop_step)
    self_attention_output = self.self_attention_dropout(self_attention_output)
xinliupitt's avatar
xinliupitt committed
394
395
396
397
398
399
400
401
402
    if self._norm_first:
      self_attention_output = source_tensor + self_attention_output
    else:
      self_attention_output = self.self_attention_layer_norm(
          input_tensor + self_attention_output)
    if self._norm_first:
      source_self_attention_output = self_attention_output
      self_attention_output = self.encdec_attention_layer_norm(
          self_attention_output)
403
    cross_attn_inputs = dict(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
404
        query=self_attention_output,
405
406
        value=memory,
        attention_mask=attention_mask)
407
408
    if self.multi_channel_cross_attention:
      # Accesses the 5-th input tensor for the doc-attention probabilities.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
409
      cross_attn_inputs["context_attention_weights"] = inputs[-1]
410
    attention_output = self.encdec_attention(**cross_attn_inputs)
411
    attention_output = self.encdec_attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
412
413
414
415
    if self._norm_first:
      attention_output = source_self_attention_output + attention_output
    else:
      attention_output = self.encdec_attention_layer_norm(
416
          self_attention_output + attention_output)
xinliupitt's avatar
xinliupitt committed
417
418
419
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self.output_layer_norm(attention_output)
420
421
422
423

    intermediate_output = self.intermediate_dense(attention_output)
    intermediate_output = self.intermediate_activation_layer(
        intermediate_output)
424
    intermediate_output = self._intermediate_dropout_layer(intermediate_output)
425
426
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
xinliupitt's avatar
xinliupitt committed
427
428
429
430
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self.output_layer_norm(layer_output + attention_output)
431
    return layer_output, cache