"vscode:/vscode.git/clone" did not exist on "7625a9d2031dfb5dd0bb0e5d73c118e9267e5f1e"
bert_squad_benchmark.py 21.2 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
Hongkun Yu's avatar
Hongkun Yu committed
26

davidmochen's avatar
davidmochen committed
27
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
from absl import logging
davidmochen's avatar
davidmochen committed
29
from absl.testing import flagsaver
30
import tensorflow as tf
davidmochen's avatar
davidmochen committed
31
32
# pylint: enable=g-bad-import-order

33
from official.benchmark import bert_benchmark_utils as benchmark_utils
Jing Li's avatar
Jing Li committed
34
from official.benchmark import owner_utils
35
from official.nlp.bert import run_squad
davidmochen's avatar
davidmochen committed
36
from official.utils.misc import distribution_utils
37
from official.utils.misc import keras_utils
38
from official.benchmark import benchmark_wrappers
39

davidmochen's avatar
davidmochen committed
40
41

# pylint: disable=line-too-long
David Chen's avatar
David Chen committed
42
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
davidmochen's avatar
davidmochen committed
43
44
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
David Chen's avatar
David Chen committed
45
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
David Chen's avatar
David Chen committed
46
SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data'
Zongwei Zhou's avatar
Zongwei Zhou committed
47
SQUAD_LONG_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_long_meta_data'
48
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
David Chen's avatar
David Chen committed
49
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
davidmochen's avatar
davidmochen committed
50
51
# pylint: enable=line-too-long

David Chen's avatar
David Chen committed
52
TMP_DIR = os.getenv('TMPDIR')
davidmochen's avatar
davidmochen committed
53
54
55
56
57
58
FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

David Chen's avatar
David Chen committed
59
  def __init__(self, output_dir=None, tpu=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
60
    super(BertSquadBenchmarkBase, self).__init__(output_dir=output_dir, tpu=tpu)
David Chen's avatar
David Chen committed
61

62
63
  def _read_training_summary_from_file(self):
    """Reads the training summary from a file."""
64
65
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
66
67
    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
68

69
70
71
72
  def _read_input_meta_data_from_file(self):
    """Reads the input metadata from a file."""
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
73

74
75
76
77
78
  def _get_distribution_strategy(self, ds_type='mirrored'):
    """Gets the distribution strategy.

    Args:
      ds_type: String, the distribution strategy type to be used. Can be
Hongkun Yu's avatar
Hongkun Yu committed
79
        'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'.
80
81
82
83

    Returns:
      A `tf.distribute.DistibutionStrategy` object.
    """
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
84
    if self.tpu or ds_type == 'tpu':
David Chen's avatar
David Chen committed
85
      return distribution_utils.get_distribution_strategy(
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
86
          distribution_strategy='tpu', tpu_address=self.tpu)
87
88
89
90
91
92
93
94
    elif ds_type == 'multi_worker_mirrored':
      # Configures cluster spec for multi-worker distribution strategy.
      _ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
                                               FLAGS.task_index)
    return distribution_utils.get_distribution_strategy(
        distribution_strategy=ds_type,
        num_gpus=self.num_gpus,
        all_reduce_alg=FLAGS.all_reduce_alg)
95

96
97
98
99
100
101
102
103
104
  def _init_gpu_and_data_threads(self):
    """Set env variables before any TF calls."""
    if FLAGS.tf_gpu_thread_mode:
      keras_utils.set_gpu_thread_mode_and_count(
          per_gpu_thread_count=FLAGS.per_gpu_thread_count,
          gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
          num_gpus=self.num_gpus,
          datasets_num_private_threads=FLAGS.datasets_num_private_threads)

davidmochen's avatar
davidmochen committed
105
  @flagsaver.flagsaver
106
107
  def _train_squad(self, run_eagerly=False, ds_type='mirrored'):
    """Runs BERT SQuAD training. Uses mirrored strategy by default."""
108
    self._init_gpu_and_data_threads()
109
    input_meta_data = self._read_input_meta_data_from_file()
110
    strategy = self._get_distribution_strategy(ds_type)
davidmochen's avatar
davidmochen committed
111
112
113
114

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
115
        run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
116
        custom_callbacks=[self.timer_callback])
117
118

  @flagsaver.flagsaver
119
120
  def _evaluate_squad(self, ds_type='mirrored'):
    """Runs BERT SQuAD evaluation. Uses mirrored strategy by default."""
121
    self._init_gpu_and_data_threads()
122
    input_meta_data = self._read_input_meta_data_from_file()
123
    strategy = self._get_distribution_strategy(ds_type)
124

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
125
126
    if input_meta_data.get('version_2_with_negative', False):
      logging.error('In memory evaluation result for SQuAD v2 is not accurate')
Hongkun Yu's avatar
Hongkun Yu committed
127
128
    eval_metrics = run_squad.eval_squad(
        strategy=strategy, input_meta_data=input_meta_data)
129
    # Use F1 score as reported evaluation metric.
Hongkun Yu's avatar
Hongkun Yu committed
130
    self.eval_metrics = eval_metrics['final_f1']
davidmochen's avatar
davidmochen committed
131
132


133
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
davidmochen's avatar
davidmochen committed
134
135
136
137
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
David Chen's avatar
David Chen committed
138
139
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
davidmochen's avatar
davidmochen committed
140
141
  """

David Chen's avatar
David Chen committed
142
143
  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir, tpu=tpu)
davidmochen's avatar
davidmochen committed
144
145

  def _setup(self):
146
147
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadBenchmarkReal, self)._setup()
davidmochen's avatar
davidmochen committed
148
149
150
151
152
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
153
    FLAGS.steps_per_loop = 100
davidmochen's avatar
davidmochen committed
154

155
  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
156
  def _run_and_report_benchmark(self, run_eagerly=False, ds_type='mirrored'):
157
    """Runs the benchmark and reports various metrics."""
158
    if FLAGS.train_batch_size <= 4 or run_eagerly:
159
160
161
      FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
162
    start_time_sec = time.time()
163
    self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
164
165
166
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
David Chen's avatar
David Chen committed
167
    summary['start_time_sec'] = start_time_sec
168
169
170
171
172
173

    super(BertSquadBenchmarkReal, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)
davidmochen's avatar
davidmochen committed
174
175

  def benchmark_1_gpu(self):
176
    """Tests BERT SQuAD model performance with 1 GPU."""
davidmochen's avatar
davidmochen committed
177
178
179
180

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
181
    FLAGS.train_batch_size = 4
davidmochen's avatar
davidmochen committed
182

183
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
184

185
186
187
188
189
190
191
192
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 2

Zongwei Zhou's avatar
Zongwei Zhou committed
193
    self._run_and_report_benchmark(run_eagerly=True)
194

195
196
197
198
199
200
  def benchmark_1_gpu_xla(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
201
202
    # XLA runs out of memory when running with batch size 4.
    FLAGS.train_batch_size = 3
203
    FLAGS.enable_xla = True
204

205
    self._run_and_report_benchmark()
206
207
208
209
210
211
212

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU without DS."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
213
    FLAGS.train_batch_size = 4
214

215
    self._run_and_report_benchmark(ds_type='off')
216
217
218
219
220
221
222
223

  def benchmark_1_gpu_eager_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_eager_no_dist_strat_squad')
224
    FLAGS.train_batch_size = 4
225

226
    self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
227

Jing Li's avatar
Jing Li committed
228
  @owner_utils.Owner('tf-model-garden')
davidmochen's avatar
davidmochen committed
229
  def benchmark_8_gpu(self):
230
231
232
233
234
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
235
    FLAGS.train_batch_size = 24
236
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
237

238
    self._run_and_report_benchmark()
239

240
241
242
243
244
245
246
247
248
249
  def benchmark_1_gpu_fp16_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16_eager')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

Zongwei Zhou's avatar
Zongwei Zhou committed
250
    self._run_and_report_benchmark(run_eagerly=True)
251

252
253
254
255
256
257
258
259
260
261
262
263
  def benchmark_1_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

264
265
266
267
268
269
270
271
272
273
274
275
276
  def benchmark_1_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

277
278
279
280
281
282
283
284
285
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
286
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
287
288
289

    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
290
291
292
293
294
295
296
297
298
299
300
301
302
  def benchmark_8_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs with XLA."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
  def benchmark_1_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp_squad')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_squad')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
324
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
325
326

    self._run_and_report_benchmark()
327

Jing Li's avatar
Jing Li committed
328
  @owner_utils.Owner('tf-model-garden')
David Chen's avatar
David Chen committed
329
330
331
332
333
334
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model performance with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
335
336
337
338
339
340
341
    FLAGS.predict_batch_size = 48
    FLAGS.mode = 'train'
    FLAGS.learning_rate = 8e-5
    FLAGS.num_train_epochs = 1
    FLAGS.steps_per_loop = 100
    FLAGS.do_lower_case = True
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
David Chen's avatar
David Chen committed
342
343
    self._run_and_report_benchmark()

344
345
346
347
348

class BertSquadAccuracy(BertSquadBenchmarkBase):
  """Short accuracy test for BERT SQuAD model.

  Tests BERT SQuAD accuracy. The naming convention of below test cases follow
David Chen's avatar
David Chen committed
349
350
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
351
352
  """

David Chen's avatar
David Chen committed
353
354
  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
355
356
357
358
359
360
361
362
363
364
365

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
366
    FLAGS.steps_per_loop = 100
367

368
  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
369
  def _run_and_report_benchmark(self, run_eagerly=False, ds_type='mirrored'):
370
    """Runs the benchmark and reports various metrics."""
371
    start_time_sec = time.time()
372
373
    self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
    self._evaluate_squad(ds_type=ds_type)
374
375
376
377
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
378
    summary['start_time_sec'] = start_time_sec
379
380
381
382

    super(BertSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
383
        min_accuracy=0.900,
384
        max_accuracy=0.920)
385

386
387
388
389
390
391
392
393
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 4

394
    self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
395

Jing Li's avatar
Jing Li committed
396
  @owner_utils.Owner('tf-model-garden')
397
398
  def benchmark_8_gpu(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""
davidmochen's avatar
davidmochen committed
399
400
401
402

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
403
    FLAGS.train_batch_size = 24
404
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
davidmochen's avatar
davidmochen committed
405

406
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
407

408
409
410
411
412
413
414
415
416
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
417
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
418
419
420

    self._run_and_report_benchmark()

421
422
423
424
425
426
427
  def benchmark_8_gpu_xla(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
    FLAGS.train_batch_size = 32
428
    FLAGS.enable_xla = True
429
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
430

431
    self._run_and_report_benchmark()
432

Jing Li's avatar
Jing Li committed
433
  @owner_utils.Owner('tf-model-garden')
David Chen's avatar
David Chen committed
434
435
436
437
438
439
440
441
442
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model accuracy with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48

    self._run_and_report_benchmark()

davidmochen's avatar
davidmochen committed
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase):
  """BERT SQuAD distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadMultiWorkerAccuracy, self).__init__(
        output_dir=output_dir, tpu=tpu)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
461
    FLAGS.steps_per_loop = 100
462
463

  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
464
  def _run_and_report_benchmark(self, use_ds=True, run_eagerly=False):
465
466
    """Runs the benchmark and reports various metrics."""
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
467
    self._train_squad(run_eagerly=run_eagerly, ds_type='multi_worker_mirrored')
468
    self._evaluate_squad(ds_type='multi_worker_mirrored')
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadMultiWorkerAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0.900,
        max_accuracy=0.920)

  def _benchmark_common(self, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

Yanhui Liang's avatar
Yanhui Liang committed
499
500
501
502
503
504
505
506
  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')


class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase):
  """BERT SQuAD distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadMultiWorkerBenchmark, self).__init__(
        output_dir=output_dir, tpu=tpu)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerBenchmark, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
529
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
530
531
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
532
    FLAGS.steps_per_loop = 100
533
534

  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
535
  def _run_and_report_benchmark(self, use_ds=True, run_eagerly=False):
536
    """Runs the benchmark and reports various metrics."""
537
538
539
540
    if FLAGS.train_batch_size <= 4 * 8:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
541
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
542
    self._train_squad(run_eagerly=run_eagerly, ds_type='multi_worker_mirrored')
543
544
545
546
547
548
549
550
551
552
553
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['start_time_sec'] = start_time_sec

    super(BertSquadMultiWorkerBenchmark, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)

Hongkun Yu's avatar
Hongkun Yu committed
554
  def _benchmark_common(self, num_workers, all_reduce_alg):
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='ring')

  def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='nccl')

  def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
583
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')
584
585
586

  def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
587
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')
588
589
590

  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
591
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')
592
593
594

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
595
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')
596
597


davidmochen's avatar
davidmochen committed
598
599
if __name__ == '__main__':
  tf.test.main()