bert_squad_benchmark.py 21.9 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""
import json
import os
import time

from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
from absl import logging
davidmochen's avatar
davidmochen committed
22
from absl.testing import flagsaver
23
import tensorflow as tf
davidmochen's avatar
davidmochen committed
24

25
from official.benchmark import benchmark_wrappers
26
from official.benchmark import bert_benchmark_utils as benchmark_utils
Jing Li's avatar
Jing Li committed
27
from official.benchmark import owner_utils
28
from official.common import distribute_utils
29
from official.nlp.bert import run_squad
30
from official.utils.misc import keras_utils
31

davidmochen's avatar
davidmochen committed
32
33

# pylint: disable=line-too-long
David Chen's avatar
David Chen committed
34
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
davidmochen's avatar
davidmochen committed
35
36
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
David Chen's avatar
David Chen committed
37
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
David Chen's avatar
David Chen committed
38
SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data'
Zongwei Zhou's avatar
Zongwei Zhou committed
39
SQUAD_LONG_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_long_meta_data'
40
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
David Chen's avatar
David Chen committed
41
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
davidmochen's avatar
davidmochen committed
42
43
# pylint: enable=line-too-long

David Chen's avatar
David Chen committed
44
TMP_DIR = os.getenv('TMPDIR')
davidmochen's avatar
davidmochen committed
45
46
47
48
49
50
FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

Zongwei Zhou's avatar
Zongwei Zhou committed
51
52
53
  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadBenchmarkBase, self).__init__(
        output_dir=output_dir, tpu=tpu, **kwargs)
David Chen's avatar
David Chen committed
54

55
56
  def _read_training_summary_from_file(self):
    """Reads the training summary from a file."""
57
58
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
59
60
    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
61

62
63
64
65
  def _read_input_meta_data_from_file(self):
    """Reads the input metadata from a file."""
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
66

67
68
69
70
71
  def _get_distribution_strategy(self, ds_type='mirrored'):
    """Gets the distribution strategy.

    Args:
      ds_type: String, the distribution strategy type to be used. Can be
Hongkun Yu's avatar
Hongkun Yu committed
72
        'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'.
73
74
75
76

    Returns:
      A `tf.distribute.DistibutionStrategy` object.
    """
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
77
    if self.tpu or ds_type == 'tpu':
78
      return distribute_utils.get_distribution_strategy(
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
79
          distribution_strategy='tpu', tpu_address=self.tpu)
80
81
    elif ds_type == 'multi_worker_mirrored':
      # Configures cluster spec for multi-worker distribution strategy.
82
83
84
      _ = distribute_utils.configure_cluster(FLAGS.worker_hosts,
                                             FLAGS.task_index)
    return distribute_utils.get_distribution_strategy(
85
86
87
        distribution_strategy=ds_type,
        num_gpus=self.num_gpus,
        all_reduce_alg=FLAGS.all_reduce_alg)
88

89
90
91
92
93
94
95
96
97
  def _init_gpu_and_data_threads(self):
    """Set env variables before any TF calls."""
    if FLAGS.tf_gpu_thread_mode:
      keras_utils.set_gpu_thread_mode_and_count(
          per_gpu_thread_count=FLAGS.per_gpu_thread_count,
          gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
          num_gpus=self.num_gpus,
          datasets_num_private_threads=FLAGS.datasets_num_private_threads)

davidmochen's avatar
davidmochen committed
98
  @flagsaver.flagsaver
99
100
  def _train_squad(self, run_eagerly=False, ds_type='mirrored'):
    """Runs BERT SQuAD training. Uses mirrored strategy by default."""
101
    self._init_gpu_and_data_threads()
102
    input_meta_data = self._read_input_meta_data_from_file()
103
    strategy = self._get_distribution_strategy(ds_type)
davidmochen's avatar
davidmochen committed
104
105
106
107

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
108
        run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
109
        custom_callbacks=[self.timer_callback])
110
111

  @flagsaver.flagsaver
112
113
  def _evaluate_squad(self, ds_type='mirrored'):
    """Runs BERT SQuAD evaluation. Uses mirrored strategy by default."""
114
    self._init_gpu_and_data_threads()
115
    input_meta_data = self._read_input_meta_data_from_file()
116
    strategy = self._get_distribution_strategy(ds_type)
117

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
118
119
    if input_meta_data.get('version_2_with_negative', False):
      logging.error('In memory evaluation result for SQuAD v2 is not accurate')
Hongkun Yu's avatar
Hongkun Yu committed
120
121
    eval_metrics = run_squad.eval_squad(
        strategy=strategy, input_meta_data=input_meta_data)
122
    # Use F1 score as reported evaluation metric.
Hongkun Yu's avatar
Hongkun Yu committed
123
    self.eval_metrics = eval_metrics['final_f1']
davidmochen's avatar
davidmochen committed
124
125


126
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
davidmochen's avatar
davidmochen committed
127
128
129
130
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
David Chen's avatar
David Chen committed
131
132
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
davidmochen's avatar
davidmochen committed
133
134
  """

David Chen's avatar
David Chen committed
135
  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
Zongwei Zhou's avatar
Zongwei Zhou committed
136
137
    super(BertSquadBenchmarkReal, self).__init__(
        output_dir=output_dir, tpu=tpu, **kwargs)
davidmochen's avatar
davidmochen committed
138
139

  def _setup(self):
140
141
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadBenchmarkReal, self)._setup()
davidmochen's avatar
davidmochen committed
142
143
144
145
146
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
147
    FLAGS.steps_per_loop = 100
davidmochen's avatar
davidmochen committed
148

149
  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
150
  def _run_and_report_benchmark(self, run_eagerly=False, ds_type='mirrored'):
151
    """Runs the benchmark and reports various metrics."""
152
    if FLAGS.train_batch_size <= 4 or run_eagerly:
153
154
155
      FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
156
    start_time_sec = time.time()
157
    self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
158
159
160
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
David Chen's avatar
David Chen committed
161
    summary['start_time_sec'] = start_time_sec
162
163
164
165
166
167

    super(BertSquadBenchmarkReal, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)
davidmochen's avatar
davidmochen committed
168
169

  def benchmark_1_gpu(self):
170
    """Tests BERT SQuAD model performance with 1 GPU."""
davidmochen's avatar
davidmochen committed
171
172
173
174

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
175
    FLAGS.train_batch_size = 4
davidmochen's avatar
davidmochen committed
176

177
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
178

179
180
181
182
183
184
185
186
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 2

Zongwei Zhou's avatar
Zongwei Zhou committed
187
    self._run_and_report_benchmark(run_eagerly=True)
188

189
190
191
192
193
194
  def benchmark_1_gpu_xla(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
195
196
    # XLA runs out of memory when running with batch size 4.
    FLAGS.train_batch_size = 3
197
    FLAGS.enable_xla = True
198

199
    self._run_and_report_benchmark()
200
201
202
203
204
205
206

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU without DS."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
207
    FLAGS.train_batch_size = 4
208

209
    self._run_and_report_benchmark(ds_type='off')
210
211
212
213
214
215
216
217

  def benchmark_1_gpu_eager_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_eager_no_dist_strat_squad')
218
    FLAGS.train_batch_size = 4
219

220
    self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
221

Jing Li's avatar
Jing Li committed
222
  @owner_utils.Owner('tf-model-garden')
davidmochen's avatar
davidmochen committed
223
  def benchmark_8_gpu(self):
224
225
226
227
228
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
229
    FLAGS.train_batch_size = 24
230
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
231

232
    self._run_and_report_benchmark()
233

234
235
236
237
238
239
240
241
242
243
  def benchmark_1_gpu_fp16_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16_eager')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

Zongwei Zhou's avatar
Zongwei Zhou committed
244
    self._run_and_report_benchmark(run_eagerly=True)
245

246
247
248
249
250
251
252
253
254
255
256
257
  def benchmark_1_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

258
259
260
261
262
263
264
265
266
267
268
269
270
  def benchmark_1_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

271
272
273
274
275
276
277
278
279
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
280
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
281
282
283

    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
284
285
286
287
288
289
290
291
292
293
294
295
296
  def benchmark_8_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs with XLA."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

Pankaj Kanwar's avatar
Pankaj Kanwar committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
  def benchmark_8_gpu_xla_tf32(self):
    """Tests BERT SQuAD model performance with 8 GPUs with XLA using TF32."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_xla_tf32')
    FLAGS.train_batch_size = 32
    FLAGS.enable_xla = True
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_xla_fp32_no_tf32(self):
    """Tests BERT SQuAD model performance with 8 GPUs with XLA using FP32."""

    self._setup()
    tf.config.experimental.enable_tensor_float_32_execution(False)
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_xla_fp32_no_tf32')
    FLAGS.train_batch_size = 32
    FLAGS.enable_xla = True
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
  def benchmark_1_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp_squad')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_squad')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
343
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
344
345

    self._run_and_report_benchmark()
346

Jing Li's avatar
Jing Li committed
347
  @owner_utils.Owner('tf-model-garden')
David Chen's avatar
David Chen committed
348
349
350
351
352
353
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model performance with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
354
355
356
357
358
359
360
    FLAGS.predict_batch_size = 48
    FLAGS.mode = 'train'
    FLAGS.learning_rate = 8e-5
    FLAGS.num_train_epochs = 1
    FLAGS.steps_per_loop = 100
    FLAGS.do_lower_case = True
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
David Chen's avatar
David Chen committed
361
362
    self._run_and_report_benchmark()

363
364
365
366
367

class BertSquadAccuracy(BertSquadBenchmarkBase):
  """Short accuracy test for BERT SQuAD model.

  Tests BERT SQuAD accuracy. The naming convention of below test cases follow
David Chen's avatar
David Chen committed
368
369
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
370
371
  """

David Chen's avatar
David Chen committed
372
  def __init__(self, output_dir=None, tpu=None, **kwargs):
Zongwei Zhou's avatar
Zongwei Zhou committed
373
374
    super(BertSquadAccuracy, self).__init__(
        output_dir=output_dir, tpu=tpu, **kwargs)
375
376
377
378
379
380
381
382
383
384
385

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
386
    FLAGS.steps_per_loop = 100
387

388
  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
389
  def _run_and_report_benchmark(self, run_eagerly=False, ds_type='mirrored'):
390
    """Runs the benchmark and reports various metrics."""
391
    start_time_sec = time.time()
392
393
    self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
    self._evaluate_squad(ds_type=ds_type)
394
395
396
397
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
398
    summary['start_time_sec'] = start_time_sec
399
400
401
402

    super(BertSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
403
        min_accuracy=0.900,
404
        max_accuracy=0.920)
405

406
407
408
409
410
411
412
413
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 4

414
    self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
415

Jing Li's avatar
Jing Li committed
416
  @owner_utils.Owner('tf-model-garden')
417
418
  def benchmark_8_gpu(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""
davidmochen's avatar
davidmochen committed
419
420
421
422

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
423
    FLAGS.train_batch_size = 24
424
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
davidmochen's avatar
davidmochen committed
425

426
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
427

428
429
430
431
432
433
434
435
436
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
437
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
438
439
440

    self._run_and_report_benchmark()

441
442
443
444
445
446
447
  def benchmark_8_gpu_xla(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
    FLAGS.train_batch_size = 32
448
    FLAGS.enable_xla = True
449
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
450

451
    self._run_and_report_benchmark()
452

Jing Li's avatar
Jing Li committed
453
  @owner_utils.Owner('tf-model-garden')
David Chen's avatar
David Chen committed
454
455
456
457
458
459
460
461
462
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model accuracy with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48

    self._run_and_report_benchmark()

davidmochen's avatar
davidmochen committed
463

464
465
466
467
468
class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase):
  """BERT SQuAD distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadMultiWorkerAccuracy, self).__init__(
Zongwei Zhou's avatar
Zongwei Zhou committed
469
        output_dir=output_dir, tpu=tpu, **kwargs)
470
471
472
473
474
475
476
477
478
479
480

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
481
    FLAGS.steps_per_loop = 100
482
483

  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
484
  def _run_and_report_benchmark(self, use_ds=True, run_eagerly=False):
485
486
    """Runs the benchmark and reports various metrics."""
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
487
    self._train_squad(run_eagerly=run_eagerly, ds_type='multi_worker_mirrored')
488
    self._evaluate_squad(ds_type='multi_worker_mirrored')
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadMultiWorkerAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0.900,
        max_accuracy=0.920)

  def _benchmark_common(self, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

Yanhui Liang's avatar
Yanhui Liang committed
519
520
521
522
523
524
525
526
  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')

527
528
529
530
531
532
533
534
535
536
537
538
539
540
  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')


class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase):
  """BERT SQuAD distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadMultiWorkerBenchmark, self).__init__(
Zongwei Zhou's avatar
Zongwei Zhou committed
541
        output_dir=output_dir, tpu=tpu, **kwargs)
542
543
544
545
546
547
548

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerBenchmark, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
549
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
550
551
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
552
    FLAGS.steps_per_loop = 100
553
554

  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
555
  def _run_and_report_benchmark(self, use_ds=True, run_eagerly=False):
556
    """Runs the benchmark and reports various metrics."""
557
558
559
560
    if FLAGS.train_batch_size <= 4 * 8:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
561
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
562
    self._train_squad(run_eagerly=run_eagerly, ds_type='multi_worker_mirrored')
563
564
565
566
567
568
569
570
571
572
573
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['start_time_sec'] = start_time_sec

    super(BertSquadMultiWorkerBenchmark, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)

Hongkun Yu's avatar
Hongkun Yu committed
574
  def _benchmark_common(self, num_workers, all_reduce_alg):
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='ring')

  def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='nccl')

  def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
603
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')
604
605
606

  def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
607
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')
608
609
610

  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
611
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')
612
613
614

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
615
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')
616
617


davidmochen's avatar
davidmochen committed
618
619
if __name__ == '__main__':
  tf.test.main()