bert_benchmark.py 11.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
22
import math
23
24
25
import os
import time

26
# pylint: disable=g-bad-import-order
27
28
from absl import flags
from absl.testing import flagsaver
29
30
import tensorflow as tf
# pylint: enable=g-bad-import-order
31

32
from official.bert import modeling
33
from official.bert import run_classifier
davidmochen's avatar
davidmochen committed
34
from official.bert.benchmark import benchmark_utils
35
from official.utils.misc import distribution_utils
36
from official.utils.misc import keras_utils
37
38

# pylint: disable=line-too-long
39
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_model.ckpt'
40
41
42
CLASSIFIER_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_train.tf_record'
CLASSIFIER_EVAL_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_eval.tf_record'
CLASSIFIER_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_meta_data'
43
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_config'
44
45
46
47
48
# pylint: enable=line-too-long

FLAGS = flags.FLAGS


davidmochen's avatar
davidmochen committed
49
class BertClassifyBenchmarkBase(benchmark_utils.BertBenchmarkBase):
50
51
52
  """Base class to hold methods common to test classes in the module."""

  def __init__(self, output_dir=None):
53
    super(BertClassifyBenchmarkBase, self).__init__(output_dir)
54
55
56
    self.num_epochs = None
    self.num_steps_per_epoch = None

57
  @flagsaver.flagsaver
58
  def _run_bert_classifier(self, callbacks=None, use_ds=True, enable_xla=False):
59
    """Starts BERT classification task."""
60
61
62
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      input_meta_data = json.loads(reader.read().decode('utf-8'))

63
    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
64
65
66
67
68
69
70
    epochs = self.num_epochs if self.num_epochs else FLAGS.num_train_epochs
    if self.num_steps_per_epoch:
      steps_per_epoch = self.num_steps_per_epoch
    else:
      train_data_size = input_meta_data['train_data_size']
      steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
    warmup_steps = int(epochs * steps_per_epoch * 0.1)
71
72
73
    eval_steps = int(
        math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))
    strategy = distribution_utils.get_distribution_strategy(
74
75
76
77
78
        distribution_strategy='mirrored' if use_ds else 'off',
        num_gpus=self.num_gpus)
    # TODO(hongkuny): Enable XLA once we are confident with its performance.
    keras_utils.set_config_v2(enable_xla)

79
    steps_per_loop = 1
80
81
82
83
84
85
86
87

    run_classifier.run_customized_training(
        strategy,
        bert_config,
        input_meta_data,
        FLAGS.model_dir,
        epochs,
        steps_per_epoch,
88
        steps_per_loop,
89
90
91
92
93
94
95
        eval_steps,
        warmup_steps,
        FLAGS.learning_rate,
        FLAGS.init_checkpoint,
        custom_callbacks=callbacks)


davidmochen's avatar
davidmochen committed
96
class BertClassifyBenchmarkReal(BertClassifyBenchmarkBase):
97
98
99
100
101
102
  """Short benchmark performance tests for BERT model.

  Tests BERT classification performance in different GPU configurations.
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """
103
104

  def __init__(self, output_dir=None, **kwargs):
105
106
    super(BertClassifyBenchmarkReal, self).__init__(output_dir=output_dir)

107
108
109
110
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.bert_config_file = MODEL_CONFIG_FILE_PATH
    self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH
111

112
113
114
115
116
    # Since we only care about performance metrics, we limit
    # the number of training steps and epochs to prevent unnecessarily
    # long tests.
    self.num_steps_per_epoch = 110
    self.num_epochs = 1
117

118
119
120
  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0,
121
122
123
                                max_accuracy=1,
                                use_ds=True,
                                enable_xla=False):
124
125
126
    """Starts BERT performance benchmark test."""

    start_time_sec = time.time()
127
128
    self._run_bert_classifier(
        callbacks=[self.timer_callback], use_ds=use_ds, enable_xla=enable_xla)
129
130
131
132
133
134
135
136
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

    # Since we do not load from any pretrained checkpoints, we ignore all
    # accuracy metrics.
    summary.pop('eval_metrics', None)
137
    super(BertClassifyBenchmarkReal, self)._report_benchmark(
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)

  def benchmark_1_gpu_mrpc(self):
    """Test BERT model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
  def benchmark_1_gpu_mrpc_xla(self):
    """Test BERT model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc_xla')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path, enable_xla=True)

  def benchmark_1_gpu_mrpc_no_dist_strat(self):
    """Test BERT model performance with 1 GPU, no distribution strategy."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc_no_dist_strat')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path, use_ds=False)

191
  def benchmark_2_gpu_mrpc(self):
192
193
194
195
    """Test BERT model performance with 2 GPUs."""

    self._setup()
    self.num_gpus = 2
196
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_mrpc')
197
198
199
200
201
202
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 8
    FLAGS.eval_batch_size = 8
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_4_gpu_mrpc(self):
    """Test BERT model performance with 4 GPUs."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_mrpc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 16

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_8_gpu_mrpc(self):
223
224
225
    """Test BERT model performance with 8 GPUs."""

    self._setup()
226
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc')
227
228
229
230
231
232
233
234
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

235

davidmochen's avatar
davidmochen committed
236
class BertClassifyAccuracy(BertClassifyBenchmarkBase):
237
238
239
240
241
242
  """Short accuracy test for BERT model.

  Tests BERT classification task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """
243
244
245
246
247
248

  def __init__(self, output_dir=None, **kwargs):
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.bert_config_file = MODEL_CONFIG_FILE_PATH
    self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH
249
    self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH
250

251
    super(BertClassifyAccuracy, self).__init__(output_dir=output_dir)
252

253
254
255
  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0.84,
256
257
                                max_accuracy=0.88,
                                enable_xla=False):
258
259
    """Starts BERT accuracy benchmark test."""

260
    start_time_sec = time.time()
261
262
    self._run_bert_classifier(
        callbacks=[self.timer_callback], enable_xla=enable_xla)
263
264
    wall_time_sec = time.time() - start_time_sec

265
266
267
    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

268
269
270
271
272
    super(BertClassifyAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)
273

274
275
276
277
278
279
280
281
  def _setup(self):
    super(BertClassifyAccuracy, self)._setup()
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.init_checkpoint = self.pretrained_checkpoint_path

282
283
284
285
286
287
288
  def benchmark_8_gpu_mrpc(self):
    """Run BERT model accuracy test with 8 GPUs.

    Due to comparatively small cardinality of  MRPC dataset, training
    accuracy metric has high variance between trainings. As so, we
    set the wide range of allowed accuracy (84% to 88%).
    """
289
    self._setup()
290
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc')
291

292
293
    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)
294

295
296
297
298
299
300
301
302
  def benchmark_8_gpu_mrpc_xla(self):
    """Run BERT model accuracy test with 8 GPUs with XLA."""
    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc_xla')

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path, enable_xla=True)

303
304
305

if __name__ == '__main__':
  tf.test.main()