bert_benchmark.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
22
import math
23
24
25
import os
import time

26
27
# pylint: disable=g-bad-import-order
import numpy as np
28
29
from absl import flags
from absl.testing import flagsaver
30
31
import tensorflow as tf
# pylint: enable=g-bad-import-order
32

33
from official.bert import modeling
34
from official.bert import run_classifier
35
from official.utils.misc import distribution_utils
36
37

# pylint: disable=line-too-long
38
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_model.ckpt'
39
40
41
CLASSIFIER_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_train.tf_record'
CLASSIFIER_EVAL_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_eval.tf_record'
CLASSIFIER_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_meta_data'
42
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_config'
43
44
45
46
47
# pylint: enable=line-too-long

FLAGS = flags.FLAGS


48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
class BenchmarkTimerCallback(tf.keras.callbacks.Callback):
  """Callback that records time it takes to run each batch."""

  def __init__(self, num_batches_to_skip=10):
    super(BenchmarkTimerCallback, self).__init__()
    self.num_batches_to_skip = num_batches_to_skip
    self.timer_records = []
    self.start_time = None

  def on_batch_start(self, batch, logs=None):
    if batch < self.num_batches_to_skip:
      return
    self.start_time = time.time()

  def on_batch_end(self, batch, logs=None):
    if batch < self.num_batches_to_skip:
      return

    assert self.start_time
    self.timer_records.append(time.time() - self.start_time)

  def get_examples_per_sec(self, batch_size):
    return batch_size / np.mean(self.timer_records)


73
74
75
76
77
class BertBenchmarkBase(tf.test.Benchmark):
  """Base class to hold methods common to test classes in the module."""
  local_flags = None

  def __init__(self, output_dir=None):
78
    self.num_gpus = 8
79
80
81
    if not output_dir:
      output_dir = '/tmp'
    self.output_dir = output_dir
82
    self.timer_callback = None
83
84
85
86
87
88
89
90

  def _get_model_dir(self, folder_name):
    """Returns directory to store info, e.g. saved model and event log."""
    return os.path.join(self.output_dir, folder_name)

  def _setup(self):
    """Sets up and resets flags before each test."""
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG)
91
    self.timer_callback = BenchmarkTimerCallback()
92

93
    if BertBenchmarkBase.local_flags is None:
94
95
96
97
98
99
100
      # Loads flags to get defaults to then override. List cannot be empty.
      flags.FLAGS(['foo'])
      saved_flag_values = flagsaver.save_flag_values()
      BertBenchmarkBase.local_flags = saved_flag_values
    else:
      flagsaver.restore_flag_values(BertBenchmarkBase.local_flags)

101
  def _report_benchmark(self, stats, wall_time_sec, min_accuracy, max_accuracy):
102
103
104
105
106
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from BERT models with known entries.
      wall_time_sec: the during of the benchmark execution in seconds
107
108
109
110
      min_accuracy: Minimum classification accuracy constraint to verify
        correctness of the model.
      max_accuracy: Maximum classification accuracy constraint to verify
        correctness of the model.
111
    """
112
113
114
    metrics = [{
        'name': 'training_loss',
        'value': stats['train_loss'],
115
116
117
118
119
    }, {
        'name':
            'examples_per_second',
        'value':
            self.timer_callback.get_examples_per_sec(FLAGS.train_batch_size)
120
121
    }]

122
    if 'eval_metrics' in stats:
123
124
125
      metrics.append({
          'name': 'eval_accuracy',
          'value': stats['eval_metrics'],
126
127
          'min_value': min_accuracy,
          'max_value': max_accuracy,
128
129
130
131
132
133
134
      })

    self.report_benchmark(
        iters=stats['total_training_steps'],
        wall_time=wall_time_sec,
        metrics=metrics)

135
  @flagsaver.flagsaver
136
137
  def _run_bert_classifier(self, callbacks=None):
    """Starts BERT classification task."""
138
139
140
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      input_meta_data = json.loads(reader.read().decode('utf-8'))

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
    epochs = FLAGS.num_train_epochs
    train_data_size = input_meta_data['train_data_size']
    steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
    warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
    eval_steps = int(
        math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))
    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy='mirrored', num_gpus=self.num_gpus)

    run_classifier.run_customized_training(
        strategy,
        bert_config,
        input_meta_data,
        FLAGS.model_dir,
        epochs,
        steps_per_epoch,
        eval_steps,
        warmup_steps,
        FLAGS.learning_rate,
        FLAGS.init_checkpoint,
        custom_callbacks=callbacks)


class BertClassifyBenchmark(BertBenchmarkBase):
  """Short benchmark performance tests for BERT model.

  Tests BERT classification performance in different GPU configurations.
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """
172
173
174
175
176
177
178

  def __init__(self, output_dir=None, **kwargs):
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.bert_config_file = MODEL_CONFIG_FILE_PATH
    self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH

179
    super(BertClassifyBenchmark, self).__init__(output_dir=output_dir)
180

181
182
183
184
  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0,
                                max_accuracy=1):
185
186
187
    """Starts BERT performance benchmark test."""

    start_time_sec = time.time()
188
    self._run_bert_classifier(callbacks=[self.timer_callback])
189
190
191
192
193
194
195
196
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

    # Since we do not load from any pretrained checkpoints, we ignore all
    # accuracy metrics.
    summary.pop('eval_metrics', None)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    super(BertClassifyBenchmark, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)

  def benchmark_1_gpu_mrpc(self):
    """Test BERT model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_mrpc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 4
    FLAGS.eval_batch_size = 4

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_2_gpu_mprc(self):
    """Test BERT model performance with 2 GPUs."""

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_mprc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 8
    FLAGS.eval_batch_size = 8
231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_4_gpu_mrpc(self):
    """Test BERT model performance with 4 GPUs."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_mrpc')
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
    FLAGS.train_batch_size = 16

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_8_gpu_mrpc(self):
251
252
253
    """Test BERT model performance with 8 GPUs."""

    self._setup()
254
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc')
255
256
257
258
259
260
261
262
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

263

264
265
266
267
268
269
270
class BertClassifyAccuracy(BertBenchmarkBase):
  """Short accuracy test for BERT model.

  Tests BERT classification task model accuracy. The naming
  convention of below test cases follow
  `benchmark_(number of gpus)_gpu_(dataset type)` format.
  """
271
272
273
274
275
276

  def __init__(self, output_dir=None, **kwargs):
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.bert_config_file = MODEL_CONFIG_FILE_PATH
    self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH
277
    self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH
278

279
    super(BertClassifyAccuracy, self).__init__(output_dir=output_dir)
280

281
282
283
284
  def _run_and_report_benchmark(self,
                                training_summary_path,
                                min_accuracy=0.84,
                                max_accuracy=0.88):
285
286
    """Starts BERT accuracy benchmark test."""

287
    start_time_sec = time.time()
288
    self._run_bert_classifier(callbacks=[self.timer_callback])
289
290
    wall_time_sec = time.time() - start_time_sec

291
292
293
    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

294
295
296
297
298
    super(BertClassifyAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)
299

300
301
302
303
304
305
306
  def benchmark_8_gpu_mrpc(self):
    """Run BERT model accuracy test with 8 GPUs.

    Due to comparatively small cardinality of  MRPC dataset, training
    accuracy metric has high variance between trainings. As so, we
    set the wide range of allowed accuracy (84% to 88%).
    """
307

308
    self._setup()
309
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mrpc')
310
311
312
313
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
314
    FLAGS.init_checkpoint = self.pretrained_checkpoint_path
315

316
317
    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)
318
319
320
321


if __name__ == '__main__':
  tf.test.main()