bert_benchmark.py 4.91 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

from absl import flags
from absl.testing import flagsaver
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.bert import run_classifier

# pylint: disable=line-too-long
32
PRETRAINED_CHECKPOINT_PATH = 'gs://tf-perfzero-data/bert/bert_model.ckpt'
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
CLASSIFIER_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_train.tf_record'
CLASSIFIER_EVAL_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_eval.tf_record'
CLASSIFIER_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/classification/mrpc_meta_data'
MODEL_CONFIG_FILE_PATH = 'gs://tf-perfzero-data/bert/bert_config'
# pylint: enable=line-too-long

FLAGS = flags.FLAGS


class BertBenchmarkBase(tf.test.Benchmark):
  """Base class to hold methods common to test classes in the module."""
  local_flags = None

  def __init__(self, output_dir=None):
    if not output_dir:
      output_dir = '/tmp'
    self.output_dir = output_dir

  def _get_model_dir(self, folder_name):
    """Returns directory to store info, e.g. saved model and event log."""
    return os.path.join(self.output_dir, folder_name)

  def _setup(self):
    """Sets up and resets flags before each test."""
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG)

59
    if BertBenchmarkBase.local_flags is None:
60
61
62
63
64
65
66
67
68
69
70
71
72
73
      # Loads flags to get defaults to then override. List cannot be empty.
      flags.FLAGS(['foo'])
      saved_flag_values = flagsaver.save_flag_values()
      BertBenchmarkBase.local_flags = saved_flag_values
    else:
      flagsaver.restore_flag_values(BertBenchmarkBase.local_flags)

  def _report_benchmark(self, stats, wall_time_sec):
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from BERT models with known entries.
      wall_time_sec: the during of the benchmark execution in seconds
    """
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    metrics = [{
        'name': 'training_loss',
        'value': stats['train_loss'],
    }]

    if 'train_metrics' in stats:
      metrics.append({
          'name': 'train_accuracy',
          'value': stats['train_metrics'],
      })
    if 'eval_metric' in stats:
      metrics.append({
          'name': 'eval_accuracy',
          'value': stats['eval_metrics'],
      })

    self.report_benchmark(
        iters=stats['total_training_steps'],
        wall_time=wall_time_sec,
        metrics=metrics)


class BertBenchmarkAccuracyTest(BertBenchmarkBase):
  """Short benchmark tests for BERT model."""
98
99
100
101
102
103

  def __init__(self, output_dir=None, **kwargs):
    self.train_data_path = CLASSIFIER_TRAIN_DATA_PATH
    self.eval_data_path = CLASSIFIER_EVAL_DATA_PATH
    self.bert_config_file = MODEL_CONFIG_FILE_PATH
    self.input_meta_data_path = CLASSIFIER_INPUT_META_DATA_PATH
104
    self.pretrained_checkpoint_path = PRETRAINED_CHECKPOINT_PATH
105

106
    super(BertBenchmarkAccuracyTest, self).__init__(output_dir=output_dir)
107
108
109
110
111
112
113
114
115

  @flagsaver.flagsaver
  def _run_bert_classifier(self):
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      input_meta_data = json.loads(reader.read().decode('utf-8'))

    strategy = tf.distribute.MirroredStrategy()
    run_classifier.run_bert(strategy, input_meta_data)

116
  def _run_and_report_benchmark(self, training_summary_path):
117
118
119
120
    start_time_sec = time.time()
    self._run_bert_classifier()
    wall_time_sec = time.time() - start_time_sec

121
122
123
124
125
    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))

    super(BertBenchmarkAccuracyTest, self)._report_benchmark(
        stats=summary, wall_time_sec=wall_time_sec)
126

127
  def benchmark_8_gpu(self):
128
    self._setup()
129
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
130
131
132
133
    FLAGS.train_data_path = self.train_data_path
    FLAGS.eval_data_path = self.eval_data_path
    FLAGS.input_meta_data_path = self.input_meta_data_path
    FLAGS.bert_config_file = self.bert_config_file
134
    FLAGS.init_checkpoint = self.pretrained_checkpoint_path
135

136
137
    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)
138
139
140
141


if __name__ == '__main__':
  tf.test.main()