inputs_test.py 58 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.tflearn.inputs."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import functools
22
import os
23
from absl import logging
pkulzc's avatar
pkulzc committed
24
from absl.testing import parameterized
25

26
import numpy as np
27
28
29
import tensorflow as tf

from object_detection import inputs
30
from object_detection.core import preprocessor
31
32
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
pkulzc's avatar
pkulzc committed
33
from object_detection.utils import test_case
34
35
36
37
38
39

FLAGS = tf.flags.FLAGS


def _get_configs_for_model(model_name):
  """Returns configurations for model."""
Zhichao Lu's avatar
Zhichao Lu committed
40
41
42
43
44
45
  fname = os.path.join(tf.resource_loader.get_data_files_path(),
                       'samples/configs/' + model_name + '.config')
  label_map_path = os.path.join(tf.resource_loader.get_data_files_path(),
                                'data/pet_label_map.pbtxt')
  data_path = os.path.join(tf.resource_loader.get_data_files_path(),
                           'test_data/pets_examples.record')
46
  configs = config_util.get_configs_from_pipeline_file(fname)
47
48
49
50
51
  override_dict = {
      'train_input_path': data_path,
      'eval_input_path': data_path,
      'label_map_path': label_map_path
  }
52
  return config_util.merge_external_params_with_configs(
53
      configs, kwargs_dict=override_dict)
54
55


56
57
58
59
60
61
62
63
64
65
66
67
68
69
def _make_initializable_iterator(dataset):
  """Creates an iterator, and initializes tables.

  Args:
    dataset: A `tf.data.Dataset` object.

  Returns:
    A `tf.data.Iterator`.
  """
  iterator = dataset.make_initializable_iterator()
  tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
  return iterator


pkulzc's avatar
pkulzc committed
70
class InputsTest(test_case.TestCase, parameterized.TestCase):
71
72
73
74

  def test_faster_rcnn_resnet50_train_input(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
75
76
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
77
    train_input_fn = inputs.create_train_input_fn(
78
        configs['train_config'], configs['train_input_config'], model_config)
79
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
80

81
    self.assertAllEqual([1, None, None, 3],
82
83
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
84
    self.assertAllEqual([1],
85
86
87
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
88
        [1, 100, 4],
89
90
91
92
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
93
        [1, 100, model_config.faster_rcnn.num_classes],
94
95
96
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
97
98
99
100
101
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
102
103
104
105
106
107
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
  def test_faster_rcnn_resnet50_train_input_with_additional_channels(self):
    """Tests the training input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
    model_config = configs['model']
    configs['train_input_config'].num_additional_channels = 2
    configs['train_config'].retain_original_images = True
    model_config.faster_rcnn.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        configs['train_config'], configs['train_input_config'], model_config)
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()

    self.assertAllEqual([1, None, None, 5],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertAllEqual(
        [1, None, None, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([1],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [1, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [1, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [1, 100, model_config.faster_rcnn.num_classes],
        labels[fields.InputDataFields.groundtruth_confidences].shape.as_list())
    self.assertEqual(
        tf.float32,
        labels[fields.InputDataFields.groundtruth_confidences].dtype)

pkulzc's avatar
pkulzc committed
151
152
153
154
155
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_faster_rcnn_resnet50_eval_input(self, eval_batch_size=1):
156
157
    """Tests the eval input function for FasterRcnnResnet50."""
    configs = _get_configs_for_model('faster_rcnn_resnet50_pets')
158
159
    model_config = configs['model']
    model_config.faster_rcnn.num_classes = 37
pkulzc's avatar
pkulzc committed
160
161
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
162
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
163
        eval_config, configs['eval_input_configs'][0], model_config)
164
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
165
    self.assertAllEqual([eval_batch_size, None, None, 3],
166
167
168
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
169
        [eval_batch_size, None, None, 3],
170
171
172
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
173
174
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
175
176
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
177
        [eval_batch_size, 100, 4],
178
179
180
181
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
182
        [eval_batch_size, 100, model_config.faster_rcnn.num_classes],
183
184
185
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
186
    self.assertAllEqual(
187
188
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
189
190
    self.assertEqual(
        tf.float32,
191
        labels[fields.InputDataFields.groundtruth_weights].dtype)
192
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
193
        [eval_batch_size, 100],
194
195
196
197
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
198
        [eval_batch_size, 100],
199
200
201
202
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
203
        [eval_batch_size, 100],
204
205
206
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
207
208
209
210

  def test_ssd_inceptionV2_train_input(self):
    """Tests the training input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
211
212
    model_config = configs['model']
    model_config.ssd.num_classes = 37
213
214
    batch_size = configs['train_config'].batch_size
    train_input_fn = inputs.create_train_input_fn(
215
        configs['train_config'], configs['train_input_config'], model_config)
216
    features, labels = _make_initializable_iterator(train_input_fn()).get_next()
217
218
219
220
221
222
223
224
225
226
227
228
229

    self.assertAllEqual([batch_size, 300, 300, 3],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual([batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [batch_size],
        labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.num_groundtruth_boxes].dtype)
    self.assertAllEqual(
230
        [batch_size, 100, 4],
231
232
233
234
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
235
        [batch_size, 100, model_config.ssd.num_classes],
236
237
238
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
239
    self.assertAllEqual(
240
        [batch_size, 100],
241
        labels[
242
            fields.InputDataFields.groundtruth_weights].shape.as_list())
243
244
    self.assertEqual(
        tf.float32,
245
        labels[fields.InputDataFields.groundtruth_weights].dtype)
246

pkulzc's avatar
pkulzc committed
247
248
249
250
251
  @parameterized.parameters(
      {'eval_batch_size': 1},
      {'eval_batch_size': 8}
  )
  def test_ssd_inceptionV2_eval_input(self, eval_batch_size=1):
252
253
    """Tests the eval input function for SSDInceptionV2."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
254
255
    model_config = configs['model']
    model_config.ssd.num_classes = 37
pkulzc's avatar
pkulzc committed
256
257
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
258
    eval_input_fn = inputs.create_eval_input_fn(
pkulzc's avatar
pkulzc committed
259
        eval_config, configs['eval_input_configs'][0], model_config)
260
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
pkulzc's avatar
pkulzc committed
261
    self.assertAllEqual([eval_batch_size, 300, 300, 3],
262
263
264
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
265
        [eval_batch_size, 300, 300, 3],
266
267
268
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
pkulzc's avatar
pkulzc committed
269
270
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
271
272
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
273
        [eval_batch_size, 100, 4],
274
275
276
277
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
278
        [eval_batch_size, 100, model_config.ssd.num_classes],
279
280
281
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
282
    self.assertAllEqual(
283
        [eval_batch_size, 100],
284
        labels[
285
            fields.InputDataFields.groundtruth_weights].shape.as_list())
286
287
    self.assertEqual(
        tf.float32,
288
        labels[fields.InputDataFields.groundtruth_weights].dtype)
289
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
290
        [eval_batch_size, 100],
291
292
293
294
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
295
        [eval_batch_size, 100],
296
297
298
299
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(
        tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
pkulzc's avatar
pkulzc committed
300
        [eval_batch_size, 100],
301
302
303
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(
        tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype)
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
  def test_ssd_inceptionV2_eval_input_with_additional_channels(
      self, eval_batch_size=1):
    """Tests the eval input function for SSDInceptionV2 with additional channels.

    Args:
      eval_batch_size: Batch size for eval set.
    """
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    model_config = configs['model']
    model_config.ssd.num_classes = 37
    configs['eval_input_configs'][0].num_additional_channels = 1
    eval_config = configs['eval_config']
    eval_config.batch_size = eval_batch_size
    eval_config.retain_original_image_additional_channels = True
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config, configs['eval_input_configs'][0], model_config)
    features, labels = _make_initializable_iterator(eval_input_fn()).get_next()
    self.assertAllEqual([eval_batch_size, 300, 300, 4],
                        features[fields.InputDataFields.image].shape.as_list())
    self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype)
    self.assertAllEqual(
        [eval_batch_size, 300, 300, 3],
        features[fields.InputDataFields.original_image].shape.as_list())
    self.assertEqual(tf.uint8,
                     features[fields.InputDataFields.original_image].dtype)
    self.assertAllEqual([eval_batch_size, 300, 300, 1], features[
        fields.InputDataFields.image_additional_channels].shape.as_list())
    self.assertEqual(
        tf.uint8,
        features[fields.InputDataFields.image_additional_channels].dtype)
    self.assertAllEqual([eval_batch_size],
                        features[inputs.HASH_KEY].shape.as_list())
    self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, 4],
        labels[fields.InputDataFields.groundtruth_boxes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_boxes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100, model_config.ssd.num_classes],
        labels[fields.InputDataFields.groundtruth_classes].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_classes].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_weights].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_weights].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_area].shape.as_list())
    self.assertEqual(tf.float32,
                     labels[fields.InputDataFields.groundtruth_area].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list())
    self.assertEqual(tf.bool,
                     labels[fields.InputDataFields.groundtruth_is_crowd].dtype)
    self.assertAllEqual(
        [eval_batch_size, 100],
        labels[fields.InputDataFields.groundtruth_difficult].shape.as_list())
    self.assertEqual(tf.int32,
                     labels[fields.InputDataFields.groundtruth_difficult].dtype)

369
370
  def test_predict_input(self):
    """Tests the predict input function."""
371
372
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    predict_input_fn = inputs.create_predict_input_fn(
373
        model_config=configs['model'],
374
        predict_input_config=configs['eval_input_configs'][0])
375
376
    serving_input_receiver = predict_input_fn()

377
    image = serving_input_receiver.features[fields.InputDataFields.image]
378
    receiver_tensors = serving_input_receiver.receiver_tensors[
379
380
        inputs.SERVING_FED_EXAMPLE_KEY]
    self.assertEqual([1, 300, 300, 3], image.shape.as_list())
381
382
383
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

384
385
386
  def test_predict_input_with_additional_channels(self):
    """Tests the predict input function with additional channels."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
387
    configs['eval_input_configs'][0].num_additional_channels = 2
388
389
    predict_input_fn = inputs.create_predict_input_fn(
        model_config=configs['model'],
390
        predict_input_config=configs['eval_input_configs'][0])
391
392
393
394
395
396
397
398
399
400
    serving_input_receiver = predict_input_fn()

    image = serving_input_receiver.features[fields.InputDataFields.image]
    receiver_tensors = serving_input_receiver.receiver_tensors[
        inputs.SERVING_FED_EXAMPLE_KEY]
    # RGB + 2 additional channels = 5 channels.
    self.assertEqual([1, 300, 300, 5], image.shape.as_list())
    self.assertEqual(tf.float32, image.dtype)
    self.assertEqual(tf.string, receiver_tensors.dtype)

401
402
403
  def test_error_with_bad_train_config(self):
    """Tests that a TypeError is raised with improper train config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
404
    configs['model'].ssd.num_classes = 37
405
406
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['eval_config'],  # Expecting `TrainConfig`.
407
408
        train_input_config=configs['train_input_config'],
        model_config=configs['model'])
409
410
411
412
413
414
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_input_config(self):
    """Tests that a TypeError is raised with improper train input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
415
416
417
418
419
420
421
422
423
424
425
426
    configs['model'].ssd.num_classes = 37
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
        train_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_train_model_config(self):
    """Tests that a TypeError is raised with improper train model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
427
428
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
429
430
        train_input_config=configs['train_input_config'],
        model_config=configs['train_config'])  # Expecting `DetectionModel`.
431
432
433
434
435
436
    with self.assertRaises(TypeError):
      train_input_fn()

  def test_error_with_bad_eval_config(self):
    """Tests that a TypeError is raised with improper eval config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
437
    configs['model'].ssd.num_classes = 37
438
439
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['train_config'],  # Expecting `EvalConfig`.
440
        eval_input_config=configs['eval_input_configs'][0],
441
        model_config=configs['model'])
442
443
444
445
446
447
    with self.assertRaises(TypeError):
      eval_input_fn()

  def test_error_with_bad_eval_input_config(self):
    """Tests that a TypeError is raised with improper eval input config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
448
    configs['model'].ssd.num_classes = 37
449
450
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
451
452
        eval_input_config=configs['model'],  # Expecting `InputReader`.
        model_config=configs['model'])
453
454
455
    with self.assertRaises(TypeError):
      eval_input_fn()

456
457
458
459
460
461
  def test_error_with_bad_eval_model_config(self):
    """Tests that a TypeError is raised with improper eval model config."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['model'].ssd.num_classes = 37
    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
462
        eval_input_config=configs['eval_input_configs'][0],
463
464
465
466
        model_config=configs['eval_config'])  # Expecting `DetectionModel`.
    with self.assertRaises(TypeError):
      eval_input_fn()

467
468
469
470
471
  def test_output_equal_in_replace_empty_string_with_random_number(self):
    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

472
    test_string = b'hello world'
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    feed_dict = {string_placeholder: test_string}

    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

    self.assertEqual(test_string, out_string)

  def test_output_is_integer_in_replace_empty_string_with_random_number(self):

    string_placeholder = tf.placeholder(tf.string, shape=[])
    replaced_string = inputs._replace_empty_string_with_random_number(
        string_placeholder)

    empty_string = ''
    feed_dict = {string_placeholder: empty_string}
    with self.test_session() as sess:
      out_string = sess.run(replaced_string, feed_dict=feed_dict)

491
492
493
494
495
496
497
    is_integer = True
    try:
      # Test whether out_string is a string which represents an integer, the
      # casting below will throw an error if out_string is not castable to int.
      int(out_string)
    except ValueError:
      is_integer = False
498

499
    self.assertTrue(is_integer)
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

  def test_force_no_resize(self):
    """Tests the functionality of force_no_reisze option."""
    configs = _get_configs_for_model('ssd_inception_v2_pets')
    configs['eval_config'].force_no_resize = True

    eval_input_fn = inputs.create_eval_input_fn(
        eval_config=configs['eval_config'],
        eval_input_config=configs['eval_input_configs'][0],
        model_config=configs['model']
    )
    train_input_fn = inputs.create_train_input_fn(
        train_config=configs['train_config'],
        train_input_config=configs['train_input_config'],
        model_config=configs['model']
    )

    features_train, _ = _make_initializable_iterator(
        train_input_fn()).get_next()

    features_eval, _ = _make_initializable_iterator(
        eval_input_fn()).get_next()

    images_train, images_eval = features_train['image'], features_eval['image']

    self.assertEqual([1, None, None, 3], images_eval.shape.as_list())
    self.assertEqual([24, 300, 300, 3], images_train.shape.as_list())
527

528

pkulzc's avatar
pkulzc committed
529
class DataAugmentationFnTest(test_case.TestCase):
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

  def test_apply_image_and_box_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
  def test_apply_image_and_box_augmentation_with_scores(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1.0], np.float32)),
581
        fields.InputDataFields.groundtruth_weights:
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
            tf.constant(np.array([0.8], np.float32)),
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_classes],
        [1.0]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[
602
            fields.InputDataFields.groundtruth_weights],
603
604
605
        [0.8]
    )

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
  def test_include_masks_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        })
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.zeros([2, 10, 10], np.uint8))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3])
    self.assertAllEqual(augmented_tensor_dict_out[
        fields.InputDataFields.groundtruth_instance_masks].shape, [2, 20, 20])

  def test_include_keypoints_in_data_augmentation(self):
    data_augmentation_options = [
        (preprocessor.resize_image, {
            'new_height': 20,
            'new_width': 20,
            'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR
        }),
        (preprocessor.scale_boxes_to_pixel_coordinates, {}),
    ]
    data_augmentation_fn = functools.partial(
        inputs.augment_input_data,
        data_augmentation_options=data_augmentation_options)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(10, 10, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32))
    }
    augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict)
    with self.test_session() as sess:
      augmented_tensor_dict_out = sess.run(augmented_tensor_dict)

    self.assertAllEqual(
        augmented_tensor_dict_out[fields.InputDataFields.image].shape,
        [20, 20, 3]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes],
        [[10, 10, 20, 20]]
    )
    self.assertAllClose(
        augmented_tensor_dict_out[fields.InputDataFields.groundtruth_keypoints],
        [[[10, 20], [10, 10]]]
    )


def _fake_model_preprocessor_fn(image):
  return (image, tf.expand_dims(tf.shape(image)[1:], axis=0))


def _fake_image_resizer_fn(image, mask):
  return (image, mask, tf.shape(image))


679
680
681
682
683
684
685
686
def _fake_resize50_preprocess_fn(image):
  image = image[0]
  image, shape = preprocessor.resize_to_range(
      image, min_dimension=50, max_dimension=50, pad_to_max_dimension=True)

  return tf.expand_dims(image, 0), tf.expand_dims(shape, axis=0)


687
class DataTransformationFnTest(test_case.TestCase, parameterized.TestCase):
688

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
  def test_combine_additional_channels_if_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    additional_channels = np.random.rand(4, 4, 2).astype(np.float32)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(image),
        fields.InputDataFields.image_additional_channels:
            tf.constant(additional_channels),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 1], np.int32))
    }

    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=1)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].dtype,
                        tf.float32)
    self.assertAllEqual(transformed_inputs[fields.InputDataFields.image].shape,
                        [4, 4, 5])
    self.assertAllClose(transformed_inputs[fields.InputDataFields.image],
                        np.concatenate((image, additional_channels), axis=2))

pkulzc's avatar
pkulzc committed
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
  def test_use_multiclass_scores_when_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(image),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.multiclass_scores:
            tf.constant(np.array([0.2, 0.3, 0.5, 0.1, 0.6, 0.3], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32))
    }

    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=3, use_multiclass_scores=True)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        np.array([[0.2, 0.3, 0.5], [0.1, 0.6, 0.3]], np.float32),
        transformed_inputs[fields.InputDataFields.groundtruth_classes])

  def test_use_multiclass_scores_when_not_present(self):
    image = np.random.rand(4, 4, 3).astype(np.float32)
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(image),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.multiclass_scores:
            tf.placeholder(tf.float32),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32))
    }

    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=3, use_multiclass_scores=True)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict),
          feed_dict={
              tensor_dict[fields.InputDataFields.multiclass_scores]:
                  np.array([], dtype=np.float32)
          })

    self.assertAllClose(
        np.array([[0, 1, 0], [0, 0, 1]], np.float32),
        transformed_inputs[fields.InputDataFields.groundtruth_classes])

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
  @parameterized.parameters(
      {'labeled_classes': [1, 2]},
      {'labeled_classes': []},
      {'labeled_classes': [1, -1, 2]}  # -1 denotes an unrecognized class
  )
  def test_use_labeled_classes(self, labeled_classes):

    def compute_fn(image, groundtruth_boxes, groundtruth_classes,
                   groundtruth_labeled_classes):
      tensor_dict = {
          fields.InputDataFields.image:
              image,
          fields.InputDataFields.groundtruth_boxes:
              groundtruth_boxes,
          fields.InputDataFields.groundtruth_classes:
              groundtruth_classes,
          fields.InputDataFields.groundtruth_labeled_classes:
              groundtruth_labeled_classes
      }

      input_transformation_fn = functools.partial(
          inputs.transform_input_data,
          model_preprocess_fn=_fake_model_preprocessor_fn,
          image_resizer_fn=_fake_image_resizer_fn,
          num_classes=3)
      return input_transformation_fn(tensor_dict=tensor_dict)

    image = np.random.rand(4, 4, 3).astype(np.float32)
    groundtruth_boxes = np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)
    groundtruth_classes = np.array([1, 2], np.int32)
    groundtruth_labeled_classes = np.array(labeled_classes, np.int32)

    transformed_inputs = self.execute_cpu(compute_fn, [
        image, groundtruth_boxes, groundtruth_classes,
        groundtruth_labeled_classes
    ])

    if labeled_classes == [1, 2] or labeled_classes == [1, -1, 2]:
      transformed_labeled_classes = [1, 1, 0]
    elif not labeled_classes:
      transformed_labeled_classes = [1, 1, 1]
    else:
      logging.exception('Unexpected labeled_classes %r', labeled_classes)

    self.assertAllEqual(
        np.array(transformed_labeled_classes, np.float32),
        transformed_inputs[fields.InputDataFields.groundtruth_labeled_classes])

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
  def test_returns_correct_class_label_encodings(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
842
843
844
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [1, 0, 0]])
845

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
  def test_returns_correct_labels_with_unrecognized_class(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(
                np.array([[0, 0, 1, 1], [.2, .2, 4, 4], [.5, .5, 1, 1]],
                         np.float32)),
        fields.InputDataFields.groundtruth_area:
            tf.constant(np.array([.5, .4, .3])),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, -1, 1], np.int32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant(
                np.array([[[.1, .1]], [[.2, .2]], [[.5, .5]]],
                         np.float32)),
        fields.InputDataFields.groundtruth_keypoint_visibilities:
863
            tf.constant([[True, True], [False, False], [True, True]]),
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.random.rand(3, 4, 4).astype(np.float32)),
        fields.InputDataFields.groundtruth_is_crowd:
            tf.constant([False, True, False]),
        fields.InputDataFields.groundtruth_difficult:
            tf.constant(np.array([0, 0, 1], np.int32))
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.num_groundtruth_boxes], 2)
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_area], [.5, .3])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_boxes],
        [[0, 0, 1, 1], [.5, .5, 1, 1]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
        [[[.1, .1]], [[.5, .5]]])
    self.assertAllEqual(
        transformed_inputs[
            fields.InputDataFields.groundtruth_keypoint_visibilities],
901
        [[True, True], [True, True]])
902
903
904
905
906
907
908
909
910
911
    self.assertAllEqual(
        transformed_inputs[
            fields.InputDataFields.groundtruth_instance_masks].shape, [2, 4, 4])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.groundtruth_is_crowd],
        [False, False])
    self.assertAllEqual(
        transformed_inputs[fields.InputDataFields.groundtruth_difficult],
        [0, 1])

912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
  def test_returns_correct_merged_boxes(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        merge_multiple_boxes=True)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_boxes],
        [[.5, .5, 1., 1.]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[1, 0, 1]])
939
940
941
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[1, 0, 1]])
942
943
944
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.num_groundtruth_boxes],
        1)
945

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
  def test_returns_correct_groundtruth_confidences_when_input_present(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32)),
        fields.InputDataFields.groundtruth_confidences:
            tf.constant(np.array([1.0, -1.0], np.float32))
    }
    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 1], [1, 0, 0]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_confidences],
        [[0, 0, 1], [-1, 0, 0]])

974
975
976
977
978
979
980
  def test_returns_resized_masks(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(4, 4, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_instance_masks:
            tf.constant(np.random.rand(2, 4, 4).astype(np.float32)),
        fields.InputDataFields.groundtruth_classes:
pkulzc's avatar
pkulzc committed
981
982
983
            tf.constant(np.array([3, 1], np.int32)),
        fields.InputDataFields.original_image_spatial_shape:
            tf.constant(np.array([4, 4], np.int32))
984
    }
985

986
    def fake_image_resizer_fn(image, masks=None):
987
      resized_image = tf.image.resize_images(image, [8, 8])
988
989
990
991
992
993
994
995
      results = [resized_image]
      if masks is not None:
        resized_masks = tf.transpose(
            tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]),
            [2, 0, 1])
        results.append(resized_masks)
      results.append(tf.shape(resized_image))
      return results
996
997
998
999
1000
1001

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=fake_image_resizer_fn,
1002
1003
        num_classes=num_classes,
        retain_original_image=True)
1004
1005
1006
    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
1007
1008
1009
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.original_image].dtype, tf.uint8)
    self.assertAllEqual(transformed_inputs[
pkulzc's avatar
pkulzc committed
1010
1011
1012
        fields.InputDataFields.original_image_spatial_shape], [4, 4])
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.original_image].shape, [8, 8, 3])
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
    self.assertAllEqual(transformed_inputs[
        fields.InputDataFields.groundtruth_instance_masks].shape, [2, 8, 8])

  def test_applies_model_preprocess_fn_to_image_tensor(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
1024

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
    def fake_model_preprocessor_fn(image):
      return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0))

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(transformed_inputs[fields.InputDataFields.image],
                        np_image / 255.)
    self.assertAllClose(transformed_inputs[fields.InputDataFields.
                                           true_image_shape],
                        [4, 4, 3])

  def test_applies_data_augmentation_fn_to_tensor_dict(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
1052

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    def add_one_data_augmentation_fn(tensor_dict):
      return {key: value + 1 for key, value in tensor_dict.items()}

    num_classes = 4
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=add_one_data_augmentation_fn)
    with self.test_session() as sess:
      augmented_tensor_dict = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
                        np_image + 1)
    self.assertAllEqual(
        augmented_tensor_dict[fields.InputDataFields.groundtruth_classes],
        [[0, 0, 0, 1], [0, 1, 0, 0]])

  def test_applies_data_augmentation_fn_before_model_preprocess_fn(self):
    np_image = np.random.randint(256, size=(4, 4, 3))
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np_image),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([3, 1], np.int32))
    }
1081

1082
1083
    def mul_two_model_preprocessor_fn(image):
      return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0))
1084

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
    def add_five_to_image_data_augmentation_fn(tensor_dict):
      tensor_dict[fields.InputDataFields.image] += 5
      return tensor_dict

    num_classes = 4
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=mul_two_model_preprocessor_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=add_five_to_image_data_augmentation_fn)
    with self.test_session() as sess:
      augmented_tensor_dict = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))

    self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image],
                        (np_image + 5) * 2)

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
  def test_resize_with_padding(self):

    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                 np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32)),
        fields.InputDataFields.groundtruth_keypoints:
1114
            tf.constant([[[0.1, 0.2]], [[0.3, 0.4]]]),
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_resize50_preprocess_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_boxes],
        [[.5, .25, 1., .5], [.0, .0, .5, .25]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
        [[[.1, .1]], [[.3, .2]]])

  def test_groundtruth_keypoint_weights(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                 np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant([[[0.1, 0.2], [0.3, 0.4]],
                         [[0.5, 0.6], [0.7, 0.8]]]),
        fields.InputDataFields.groundtruth_keypoint_visibilities:
            tf.constant([[True, False], [True, True]]),
    }

    num_classes = 3
    keypoint_type_weight = [1.0, 2.0]
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_resize50_preprocess_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes,
        keypoint_type_weight=keypoint_type_weight)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
        [[[0.1, 0.1], [0.3, 0.2]],
         [[0.5, 0.3], [0.7, 0.4]]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoint_weights],
        [[1.0, 0.0], [1.0, 2.0]])

  def test_groundtruth_keypoint_weights_default(self):
    tensor_dict = {
        fields.InputDataFields.image:
            tf.constant(np.random.rand(100, 50, 3).astype(np.float32)),
        fields.InputDataFields.groundtruth_boxes:
            tf.constant(np.array([[.5, .5, 1, 1], [.0, .0, .5, .5]],
                                 np.float32)),
        fields.InputDataFields.groundtruth_classes:
            tf.constant(np.array([1, 2], np.int32)),
        fields.InputDataFields.groundtruth_keypoints:
            tf.constant([[[0.1, 0.2], [0.3, 0.4]],
                         [[0.5, 0.6], [0.7, 0.8]]]),
    }

    num_classes = 3
    input_transformation_fn = functools.partial(
        inputs.transform_input_data,
        model_preprocess_fn=_fake_resize50_preprocess_fn,
        image_resizer_fn=_fake_image_resizer_fn,
        num_classes=num_classes)

    with self.test_session() as sess:
      transformed_inputs = sess.run(
          input_transformation_fn(tensor_dict=tensor_dict))
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoints],
        [[[0.1, 0.1], [0.3, 0.2]],
         [[0.5, 0.3], [0.7, 0.4]]])
    self.assertAllClose(
        transformed_inputs[fields.InputDataFields.groundtruth_keypoint_weights],
        [[1.0, 1.0], [1.0, 1.0]])
1201

1202

pkulzc's avatar
pkulzc committed
1203
class PadInputDataToStaticShapesFnTest(test_case.TestCase):
1204
1205
1206
1207
1208
1209
1210
1211
1212

  def test_pad_images_boxes_and_classes(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
        fields.InputDataFields.groundtruth_boxes:
            tf.placeholder(tf.float32, [None, 4]),
        fields.InputDataFields.groundtruth_classes:
            tf.placeholder(tf.int32, [None, 3]),
pkulzc's avatar
pkulzc committed
1213
1214
1215
1216
        fields.InputDataFields.true_image_shape:
            tf.placeholder(tf.int32, [3]),
        fields.InputDataFields.original_image_spatial_shape:
            tf.placeholder(tf.int32, [2])
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.true_image_shape]
        .shape.as_list(), [3])
pkulzc's avatar
pkulzc committed
1230
1231
1232
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.original_image_spatial_shape]
        .shape.as_list(), [2])
1233
1234
1235
1236
1237
1238
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
        .shape.as_list(), [3, 4])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
        .shape.as_list(), [3, 3])
1239
1240
1241
1242
1243
1244
1245

  def test_clip_boxes_and_classes(self):
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_boxes:
            tf.placeholder(tf.float32, [None, 4]),
        fields.InputDataFields.groundtruth_classes:
            tf.placeholder(tf.int32, [None, 3]),
1246
1247
        fields.InputDataFields.num_groundtruth_boxes:
            tf.placeholder(tf.int32, [])
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_boxes]
        .shape.as_list(), [3, 4])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_classes]
        .shape.as_list(), [3, 3])

    with self.test_session() as sess:
      out_tensor_dict = sess.run(
          padded_tensor_dict,
          feed_dict={
              input_tensor_dict[fields.InputDataFields.groundtruth_boxes]:
                  np.random.rand(5, 4),
              input_tensor_dict[fields.InputDataFields.groundtruth_classes]:
                  np.random.rand(2, 3),
1270
1271
              input_tensor_dict[fields.InputDataFields.num_groundtruth_boxes]:
                  5,
1272
1273
1274
1275
1276
1277
1278
          })

    self.assertAllEqual(
        out_tensor_dict[fields.InputDataFields.groundtruth_boxes].shape, [3, 4])
    self.assertAllEqual(
        out_tensor_dict[fields.InputDataFields.groundtruth_classes].shape,
        [3, 3])
1279
1280
1281
    self.assertEqual(
        out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
        3)
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

  def test_do_not_pad_dynamic_images(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[None, None])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [None, None, 3])

  def test_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1301
            tf.placeholder(tf.float32, [None, None, 5]),
1302
1303
1304
1305
1306
1307
1308
1309
1310
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

1311
1312
    # pad_input_data_to_static_shape assumes that image is already concatenated
    # with additional channels.
1313
1314
1315
1316
1317
1318
1319
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 5])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
  def test_images_and_additional_channels_errors(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 3]),
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
        fields.InputDataFields.original_image:
            tf.placeholder(tf.float32, [None, None, 3]),
    }
    with self.assertRaises(ValueError):
      _ = inputs.pad_input_data_to_static_shapes(
          tensor_dict=input_tensor_dict,
          max_num_boxes=3,
          num_classes=3,
          spatial_image_shape=[5, 6])

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
  def test_gray_images(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
            tf.placeholder(tf.float32, [None, None, 1]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 1])

  def test_gray_images_and_additional_channels(self):
    input_tensor_dict = {
        fields.InputDataFields.image:
1354
            tf.placeholder(tf.float32, [None, None, 3]),
1355
1356
1357
        fields.InputDataFields.image_additional_channels:
            tf.placeholder(tf.float32, [None, None, 2]),
    }
1358
1359
    # pad_input_data_to_static_shape assumes that image is already concatenated
    # with additional channels.
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image].shape.as_list(),
        [5, 6, 3])
    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.image_additional_channels]
        .shape.as_list(), [5, 6, 2])

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
  def test_keypoints(self):
    input_tensor_dict = {
        fields.InputDataFields.groundtruth_keypoints:
            tf.placeholder(tf.float32, [None, 16, 4]),
        fields.InputDataFields.groundtruth_keypoint_visibilities:
            tf.placeholder(tf.bool, [None, 16]),
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6])

    self.assertAllEqual(
        padded_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
        .shape.as_list(), [3, 16, 4])
    self.assertAllEqual(
        padded_tensor_dict[
            fields.InputDataFields.groundtruth_keypoint_visibilities]
        .shape.as_list(), [3, 16])

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
  def test_context_features(self):
    context_memory_size = 8
    context_feature_length = 10
    max_num_context_features = 20
    input_tensor_dict = {
        fields.InputDataFields.context_features:
            tf.placeholder(tf.float32,
                           [context_memory_size, context_feature_length]),
        fields.InputDataFields.context_feature_length:
            tf.placeholder(tf.float32, [])
    }
    padded_tensor_dict = inputs.pad_input_data_to_static_shapes(
        tensor_dict=input_tensor_dict,
        max_num_boxes=3,
        num_classes=3,
        spatial_image_shape=[5, 6],
        max_num_context_features=max_num_context_features,
        context_feature_length=context_feature_length)

    self.assertAllEqual(
        padded_tensor_dict[
            fields.InputDataFields.context_features].shape.as_list(),
        [max_num_context_features, context_feature_length])

    with self.test_session() as sess:
      feed_dict = {
          input_tensor_dict[fields.InputDataFields.context_features]:
              np.ones([context_memory_size, context_feature_length],
                      dtype=np.float32),
          input_tensor_dict[fields.InputDataFields.context_feature_length]:
              context_feature_length
      }
      padded_tensor_dict_out = sess.run(padded_tensor_dict, feed_dict=feed_dict)

    self.assertEqual(
        padded_tensor_dict_out[fields.InputDataFields.valid_context_size],
        context_memory_size)

1432

1433
1434
if __name__ == '__main__':
  tf.test.main()