model_lib.py 48.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import copy
22
import functools
23
import os
24

25
import tensorflow.compat.v1 as tf
26
import tensorflow.compat.v2 as tf2
27
28
import tf_slim as slim

29
from object_detection import eval_util
30
from object_detection import exporter as exporter_lib
31
from object_detection import inputs
32
from object_detection.builders import graph_rewriter_builder
33
34
35
36
37
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
38
from object_detection.utils import ops
39
40
41
42
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

43
44
45
46
47
48
49
50
# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import learn as contrib_learn
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top

51
52
53
54
55
56
57
58
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
59
60
61
62
63
64
    'create_train_input_fn':
        inputs.create_train_input_fn,
    'create_eval_input_fn':
        inputs.create_eval_input_fn,
    'create_predict_input_fn':
        inputs.create_predict_input_fn,
65
    'detection_model_fn_base': model_builder.build,
66
67
68
}


69
70
def _prepare_groundtruth_for_eval(detection_model, class_agnostic,
                                  max_number_of_boxes):
71
  """Extracts groundtruth data from detection_model and prepares it for eval.
72
73
74
75

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.
76
    max_number_of_boxes: Max number of groundtruth boxes.
77
78
79
80

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
81
82
83
84
85
      'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes,
        in normalized coordinates.
      'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
        classes.
      'groundtruth_masks': 4D float32 tensor of instance masks (if provided in
86
        groundtruth)
87
88
      'groundtruth_is_crowd': [batch_size, num_boxes] bool tensor indicating
        is_crowd annotations (if provided in groundtruth).
89
90
91
      'groundtruth_area': [batch_size, num_boxes] float32 tensor indicating
        the area (in the original absolute coordinates) of annotations (if
        provided in groundtruth).
92
93
      'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
        of groundtruth boxes per image..
94
95
      'groundtruth_keypoints': [batch_size, num_boxes, num_keypoints, 2] float32
        tensor of keypoints (if provided in groundtruth).
96
97
98
99
100
101
102
103
104
      'groundtruth_dp_num_points_list': [batch_size, num_boxes] int32 tensor
        with the number of DensePose points for each instance (if provided in
        groundtruth).
      'groundtruth_dp_part_ids_list': [batch_size, num_boxes,
        max_sampled_points] int32 tensor with the part ids for each DensePose
        sampled point (if provided in groundtruth).
      'groundtruth_dp_surface_coords_list': [batch_size, num_boxes,
        max_sampled_points, 4] containing the DensePose surface coordinates for
        each sampled point (if provided in groundtruth).
105
106
      'groundtruth_track_ids_list': [batch_size, num_boxes] int32 tensor
        with track ID for each instance (if provided in groundtruth).
107
108
109
110
      'groundtruth_group_of': [batch_size, num_boxes] bool tensor indicating
        group_of annotations (if provided in groundtruth).
      'groundtruth_labeled_classes': [batch_size, num_classes] int64
        tensor of 1-indexed classes.
111
112
113
114
115
116
      'groundtruth_verified_neg_classes': [batch_size, num_classes] float32
        K-hot representation of 1-indexed classes which were verified as not
        present in the image.
      'groundtruth_not_exhaustive_classes': [batch_size, num_classes] K-hot
        representation of 1-indexed classes which don't have all of their
        instances marked exhaustively.
117
118
119
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
120
121
122
  groundtruth_boxes = tf.stack(
      detection_model.groundtruth_lists(fields.BoxListFields.boxes))
  groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
123
124
125
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
126
127
    groundtruth_classes_one_hot = tf.ones(
        [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
128
  else:
129
130
    groundtruth_classes_one_hot = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.classes))
131
132
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
133
      tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
134
135
136
137
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
138

139
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
140
141
142
    groundtruth[input_data_fields.groundtruth_instance_masks] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.masks))

143
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
144
145
146
    groundtruth[input_data_fields.groundtruth_is_crowd] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd))

147
148
149
150
151
152
153
154
  if detection_model.groundtruth_has_field(input_data_fields.groundtruth_area):
    groundtruth[input_data_fields.groundtruth_area] = tf.stack(
        detection_model.groundtruth_lists(input_data_fields.groundtruth_area))

  if detection_model.groundtruth_has_field(fields.BoxListFields.keypoints):
    groundtruth[input_data_fields.groundtruth_keypoints] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoints))

155
156
157
158
159
160
161
162
163
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_depths):
    groundtruth[input_data_fields.groundtruth_keypoint_depths] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoint_depths))
    groundtruth[
        input_data_fields.groundtruth_keypoint_depth_weights] = tf.stack(
            detection_model.groundtruth_lists(
                fields.BoxListFields.keypoint_depth_weights))

164
165
166
167
168
169
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_visibilities):
    groundtruth[input_data_fields.groundtruth_keypoint_visibilities] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.keypoint_visibilities))

170
171
172
173
  if detection_model.groundtruth_has_field(fields.BoxListFields.group_of):
    groundtruth[input_data_fields.groundtruth_group_of] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.group_of))

174
  label_id_offset_paddings = tf.constant([[0, 0], [1, 0]])
175
  if detection_model.groundtruth_has_field(
176
      input_data_fields.groundtruth_verified_neg_classes):
177
178
179
180
    groundtruth[input_data_fields.groundtruth_verified_neg_classes] = tf.pad(
        tf.stack(detection_model.groundtruth_lists(
            input_data_fields.groundtruth_verified_neg_classes)),
        label_id_offset_paddings)
181
182
183
184

  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_not_exhaustive_classes):
    groundtruth[
185
186
187
188
        input_data_fields.groundtruth_not_exhaustive_classes] = tf.pad(
            tf.stack(detection_model.groundtruth_lists(
                input_data_fields.groundtruth_not_exhaustive_classes)),
            label_id_offset_paddings)
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_num_points):
    groundtruth[input_data_fields.groundtruth_dp_num_points] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_num_points))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_part_ids):
    groundtruth[input_data_fields.groundtruth_dp_part_ids] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_part_ids))
  if detection_model.groundtruth_has_field(
      fields.BoxListFields.densepose_surface_coords):
    groundtruth[input_data_fields.groundtruth_dp_surface_coords] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.densepose_surface_coords))
205
206
207
208
209

  if detection_model.groundtruth_has_field(fields.BoxListFields.track_ids):
    groundtruth[input_data_fields.groundtruth_track_ids] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.track_ids))

210
211
  if detection_model.groundtruth_has_field(
      input_data_fields.groundtruth_labeled_classes):
212
213
214
215
216
    groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.pad(
        tf.stack(
            detection_model.groundtruth_lists(
                input_data_fields.groundtruth_labeled_classes)),
        label_id_offset_paddings)
217

218
219
  groundtruth[input_data_fields.num_groundtruth_boxes] = (
      tf.tile([max_number_of_boxes], multiples=[groundtruth_boxes_shape[0]]))
220
221
222
223
224
225
226
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
227
  tensor_dict containing values that are lists of unstacked, unpadded tensors.
228
229
230
231
232
233

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

234
235
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
254
255
256
  unbatched_tensor_dict = {
      key: tf.unstack(tensor) for key, tensor in tensor_dict.items()
  }
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
272
273
        fields.InputDataFields.groundtruth_keypoint_depths,
        fields.InputDataFields.groundtruth_keypoint_depth_weights,
274
        fields.InputDataFields.groundtruth_keypoint_visibilities,
275
276
277
        fields.InputDataFields.groundtruth_dp_num_points,
        fields.InputDataFields.groundtruth_dp_part_ids,
        fields.InputDataFields.groundtruth_dp_surface_coords,
278
        fields.InputDataFields.groundtruth_track_ids,
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
299

300
301
302
303
304
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


pkulzc's avatar
pkulzc committed
305
def provide_groundtruth(model, labels):
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
  """Provides the labels to a model as groundtruth.

  This helper function extracts the corresponding boxes, classes,
  keypoints, weights, masks, etc. from the labels, and provides it
  as groundtruth to the models.

  Args:
    model: The detection model to provide groundtruth to.
    labels: The labels for the training or evaluation inputs.
  """
  gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
  gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
  gt_masks_list = None
  if fields.InputDataFields.groundtruth_instance_masks in labels:
    gt_masks_list = labels[
        fields.InputDataFields.groundtruth_instance_masks]
  gt_keypoints_list = None
  if fields.InputDataFields.groundtruth_keypoints in labels:
    gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
325
326
327
328
329
330
331
  gt_keypoint_depths_list = None
  gt_keypoint_depth_weights_list = None
  if fields.InputDataFields.groundtruth_keypoint_depths in labels:
    gt_keypoint_depths_list = (
        labels[fields.InputDataFields.groundtruth_keypoint_depths])
    gt_keypoint_depth_weights_list = (
        labels[fields.InputDataFields.groundtruth_keypoint_depth_weights])
332
333
334
335
  gt_keypoint_visibilities_list = None
  if fields.InputDataFields.groundtruth_keypoint_visibilities in labels:
    gt_keypoint_visibilities_list = labels[
        fields.InputDataFields.groundtruth_keypoint_visibilities]
336
337
338
339
340
341
342
343
344
345
346
347
  gt_dp_num_points_list = None
  if fields.InputDataFields.groundtruth_dp_num_points in labels:
    gt_dp_num_points_list = labels[
        fields.InputDataFields.groundtruth_dp_num_points]
  gt_dp_part_ids_list = None
  if fields.InputDataFields.groundtruth_dp_part_ids in labels:
    gt_dp_part_ids_list = labels[
        fields.InputDataFields.groundtruth_dp_part_ids]
  gt_dp_surface_coords_list = None
  if fields.InputDataFields.groundtruth_dp_surface_coords in labels:
    gt_dp_surface_coords_list = labels[
        fields.InputDataFields.groundtruth_dp_surface_coords]
348
349
350
351
  gt_track_ids_list = None
  if fields.InputDataFields.groundtruth_track_ids in labels:
    gt_track_ids_list = labels[
        fields.InputDataFields.groundtruth_track_ids]
352
353
354
355
356
357
358
359
360
361
  gt_weights_list = None
  if fields.InputDataFields.groundtruth_weights in labels:
    gt_weights_list = labels[fields.InputDataFields.groundtruth_weights]
  gt_confidences_list = None
  if fields.InputDataFields.groundtruth_confidences in labels:
    gt_confidences_list = labels[
        fields.InputDataFields.groundtruth_confidences]
  gt_is_crowd_list = None
  if fields.InputDataFields.groundtruth_is_crowd in labels:
    gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
362
363
364
  gt_group_of_list = None
  if fields.InputDataFields.groundtruth_group_of in labels:
    gt_group_of_list = labels[fields.InputDataFields.groundtruth_group_of]
365
366
367
368
369
370
371
  gt_area_list = None
  if fields.InputDataFields.groundtruth_area in labels:
    gt_area_list = labels[fields.InputDataFields.groundtruth_area]
  gt_labeled_classes = None
  if fields.InputDataFields.groundtruth_labeled_classes in labels:
    gt_labeled_classes = labels[
        fields.InputDataFields.groundtruth_labeled_classes]
372
373
374
375
376
377
378
379
  gt_verified_neg_classes = None
  if fields.InputDataFields.groundtruth_verified_neg_classes in labels:
    gt_verified_neg_classes = labels[
        fields.InputDataFields.groundtruth_verified_neg_classes]
  gt_not_exhaustive_classes = None
  if fields.InputDataFields.groundtruth_not_exhaustive_classes in labels:
    gt_not_exhaustive_classes = labels[
        fields.InputDataFields.groundtruth_not_exhaustive_classes]
380
381
382
383
  model.provide_groundtruth(
      groundtruth_boxes_list=gt_boxes_list,
      groundtruth_classes_list=gt_classes_list,
      groundtruth_confidences_list=gt_confidences_list,
384
      groundtruth_labeled_classes=gt_labeled_classes,
385
386
      groundtruth_masks_list=gt_masks_list,
      groundtruth_keypoints_list=gt_keypoints_list,
387
      groundtruth_keypoint_visibilities_list=gt_keypoint_visibilities_list,
388
389
390
      groundtruth_dp_num_points_list=gt_dp_num_points_list,
      groundtruth_dp_part_ids_list=gt_dp_part_ids_list,
      groundtruth_dp_surface_coords_list=gt_dp_surface_coords_list,
391
      groundtruth_weights_list=gt_weights_list,
392
      groundtruth_is_crowd_list=gt_is_crowd_list,
393
      groundtruth_group_of_list=gt_group_of_list,
394
      groundtruth_area_list=gt_area_list,
395
396
      groundtruth_track_ids_list=gt_track_ids_list,
      groundtruth_verified_neg_classes=gt_verified_neg_classes,
397
398
399
      groundtruth_not_exhaustive_classes=gt_not_exhaustive_classes,
      groundtruth_keypoint_depths_list=gt_keypoint_depths_list,
      groundtruth_keypoint_depth_weights_list=gt_keypoint_depth_weights_list)
400
401


402
def create_model_fn(detection_model_fn, configs, hparams=None, use_tpu=False,
403
                    postprocess_on_cpu=False):
404
405
406
407
408
409
410
411
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.
412
413
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu is true, postprocess
        is scheduled on the host cpu.
414
415
416
417
418
419

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
420
  eval_config = configs['eval_config']
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
439
440
441
442

    # Make sure to set the Keras learning phase. True during training,
    # False for inference.
    tf.keras.backend.set_learning_phase(is_training)
443
444
445
446
447
    # Set policy for mixed-precision training with Keras-based models.
    if use_tpu and train_config.use_bfloat16:
      from tensorflow.python.keras.engine import base_layer_utils  # pylint: disable=g-import-not-at-top
      # Enable v2 behavior, as `mixed_bfloat16` is only supported in TF 2.0.
      base_layer_utils.enable_v2_dtype_behavior()
448
      tf2.keras.mixed_precision.experimental.set_policy(
449
          'mixed_bfloat16')
450
451
    detection_model = detection_model_fn(
        is_training=is_training, add_summaries=(not use_tpu))
452
453
454
455
456
457
458
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
459
460
461
462
463
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
464
      unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu
465
466
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
467
468

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
pkulzc's avatar
pkulzc committed
469
      provide_groundtruth(detection_model, labels)
470
471

    preprocessed_images = features[fields.InputDataFields.image]
472
473
474

    side_inputs = detection_model.get_side_inputs(features)

475
    if use_tpu and train_config.use_bfloat16:
476
      with tf.tpu.bfloat16_scope():
477
478
        prediction_dict = detection_model.predict(
            preprocessed_images,
479
            features[fields.InputDataFields.true_image_shape], **side_inputs)
480
        prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
481
482
483
    else:
      prediction_dict = detection_model.predict(
          preprocessed_images,
484
          features[fields.InputDataFields.true_image_shape], **side_inputs)
485
486
487
488

    def postprocess_wrapper(args):
      return detection_model.postprocess(args[0], args[1])

489
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
490
      if use_tpu and postprocess_on_cpu:
491
        detections = tf.tpu.outside_compilation(
492
493
494
495
496
497
498
            postprocess_wrapper,
            (prediction_dict,
             features[fields.InputDataFields.true_image_shape]))
      else:
        detections = postprocess_wrapper((
            prediction_dict,
            features[fields.InputDataFields.true_image_shape]))
499
500

    if mode == tf.estimator.ModeKeys.TRAIN:
501
502
      load_pretrained = hparams.load_pretrained if hparams else False
      if train_config.fine_tune_checkpoint and load_pretrained:
503
504
505
506
507
508
509
510
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
511
        asg_map = detection_model.restore_map(
512
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
513
514
515
516
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
517
518
                asg_map,
                train_config.fine_tune_checkpoint,
519
520
                include_global_step=False))
        if use_tpu:
521

522
523
524
525
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
526

527
528
529
530
531
532
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
      if (mode == tf.estimator.ModeKeys.EVAL and
          eval_config.use_dummy_loss_in_eval):
        total_loss = tf.constant(1.0)
        losses_dict = {'Loss/total_loss': total_loss}
      else:
        losses_dict = detection_model.loss(
            prediction_dict, features[fields.InputDataFields.true_image_shape])
        losses = [loss_tensor for loss_tensor in losses_dict.values()]
        if train_config.add_regularization_loss:
          regularization_losses = detection_model.regularization_losses()
          if use_tpu and train_config.use_bfloat16:
            regularization_losses = ops.bfloat16_to_float32_nested(
                regularization_losses)
          if regularization_losses:
            regularization_loss = tf.add_n(
                regularization_losses, name='regularization_loss')
            losses.append(regularization_loss)
            losses_dict['Loss/regularization_loss'] = regularization_loss
        total_loss = tf.add_n(losses, name='total_loss')
        losses_dict['Loss/total_loss'] = total_loss
553

554
555
556
557
558
      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

559
560
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
561
562
563
564
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

565
    if mode == tf.estimator.ModeKeys.TRAIN:
566
      if use_tpu:
567
        training_optimizer = tf.tpu.CrossShardOptimizer(training_optimizer)
568
569
570

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
571
572
573
574
575
576
      include_variables = (
          train_config.update_trainable_variables
          if train_config.update_trainable_variables else None)
      exclude_variables = (
          train_config.freeze_variables
          if train_config.freeze_variables else None)
577
      trainable_variables = slim.filter_variables(
578
579
580
          tf.trainable_variables(),
          include_patterns=include_variables,
          exclude_patterns=exclude_variables)
581
582
583
584
585
586
587
588
589

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
590
591
      if train_config.summarize_gradients:
        summaries = ['gradients', 'gradient_norm', 'global_gradient_norm']
592
      train_op = slim.optimizers.optimize_loss(
593
594
595
596
597
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
598
          update_ops=detection_model.updates(),
599
600
601
602
603
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
604
      exported_output = exporter_lib.add_output_tensor_nodes(detections)
605
606
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
607
              tf.estimator.export.PredictOutput(exported_output)
608
609
610
      }

    eval_metric_ops = None
611
    scaffold = None
612
    if mode == tf.estimator.ModeKeys.EVAL:
613
614
      class_agnostic = (
          fields.DetectionResultFields.detection_classes not in detections)
615
616
617
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic,
          eval_input_config.max_number_of_boxes)
618
      use_original_images = fields.InputDataFields.original_image in features
pkulzc's avatar
pkulzc committed
619
      if use_original_images:
620
621
622
623
624
        eval_images = features[fields.InputDataFields.original_image]
        true_image_shapes = tf.slice(
            features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3])
        original_image_spatial_shapes = features[fields.InputDataFields
                                                 .original_image_spatial_shape]
pkulzc's avatar
pkulzc committed
625
626
      else:
        eval_images = features[fields.InputDataFields.image]
627
628
        true_image_shapes = None
        original_image_spatial_shapes = None
pkulzc's avatar
pkulzc committed
629

630
631
632
      eval_dict = eval_util.result_dict_for_batched_example(
          eval_images,
          features[inputs.HASH_KEY],
633
634
635
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
636
637
638
          scale_to_absolute=True,
          original_image_spatial_shapes=original_image_spatial_shapes,
          true_image_shapes=true_image_shapes)
639

640
641
642
643
      if fields.InputDataFields.image_additional_channels in features:
        eval_dict[fields.InputDataFields.image_additional_channels] = features[
            fields.InputDataFields.image_additional_channels]

644
645
646
647
648
      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
649
      vis_metric_ops = None
650
      if not use_tpu and use_original_images:
651
652
653
        keypoint_edges = [
            (kp.start, kp.end) for kp in eval_config.keypoint_edge]

654
655
656
657
658
        eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections(
            category_index,
            max_examples_to_draw=eval_config.num_visualizations,
            max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
            min_score_thresh=eval_config.min_score_threshold,
659
660
            use_normalized_coordinates=False,
            keypoint_edges=keypoint_edges or None)
661
662
        vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops(
            eval_dict)
663

664
665
      # Eval metrics on a single example.
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
DefineFC's avatar
DefineFC committed
666
          eval_config, list(category_index.values()), eval_dict)
667
668
669
670
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
671
672
      if vis_metric_ops is not None:
        eval_metric_ops.update(vis_metric_ops)
673
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()}
674

675
676
677
678
679
680
681
682
683
684
      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

685
686
    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
687
      return tf.estimator.tpu.TPUEstimatorSpec(
688
689
690
691
692
693
694
695
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
696
697
698
699
700
701
702
703
704
      if scaffold is None:
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            sharded=True,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
            save_relative_paths=True)
        tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
        scaffold = tf.train.Scaffold(saver=saver)
705
706
707
708
709
710
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
711
712
          export_outputs=export_outputs,
          scaffold=scaffold)
713
714
715
716

  return model_fn


717
def create_estimator_and_inputs(run_config,
718
719
                                hparams=None,
                                pipeline_config_path=None,
720
                                config_override=None,
721
                                train_steps=None,
722
                                sample_1_of_n_eval_examples=1,
723
                                sample_1_of_n_eval_on_train_examples=1,
724
725
726
727
728
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
729
                                override_eval_num_epochs=True,
730
                                save_final_config=False,
731
732
                                postprocess_on_cpu=False,
                                export_to_tpu=None,
733
734
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
735
736
737

  Args:
    run_config: A `RunConfig`.
738
    hparams: (optional) A `HParams`.
739
    pipeline_config_path: A path to a pipeline config file.
740
741
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
742
743
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
744
745
746
747
748
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
749
750
751
752
753
754
755
756
757
758
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

759
760
761
762
763
764
765
766
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
767
768
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
769
770
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `estimator.model_dir`.
771
772
773
774
775
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
    export_to_tpu: When use_tpu and export_to_tpu are true,
      `export_savedmodel()` exports a metagraph for serving on TPU besides the
      one on CPU.
776
777
778
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
779
780
781
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
782
783
    'eval_input_fns': A list of all evaluation input functions.
    'eval_input_names': A list of names for each evaluation input.
784
    'eval_on_train_input_fn': An evaluation-on-train input function.
785
786
787
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
788
  """
789
790
791
792
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
793
794
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
795
796
797
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']
798
  detection_model_fn_base = MODEL_BUILD_UTIL_MAP['detection_model_fn_base']
799

800
801
  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
802
803
  kwargs.update({
      'train_steps': train_steps,
804
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
805
  })
pkulzc's avatar
pkulzc committed
806
807
808
809
  if sample_1_of_n_eval_examples >= 1:
    kwargs.update({
        'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples
    })
810
811
812
813
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
814
  configs = merge_external_params_with_configs(
815
      configs, hparams, kwargs_dict=kwargs)
816
817
818
819
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
820
821
822
823
824
825
826
827
828
829
830
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1
831

832
833
834
  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps
835
836

  detection_model_fn = functools.partial(
837
      detection_model_fn_base, model_config=model_config)
838

839
  # Create the input functions for TRAIN/EVAL/PREDICT.
840
  train_input_fn = create_train_input_fn(
841
842
843
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
844
845
846
847
848
849
850
851
  eval_input_fns = []
  for eval_input_config in eval_input_configs:
    eval_input_fns.append(
        create_eval_input_fn(
            eval_config=eval_config,
            eval_input_config=eval_input_config,
            model_config=model_config))

852
853
854
  eval_input_names = [
      eval_input_config.name for eval_input_config in eval_input_configs
  ]
855
856
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
857
      eval_input_config=eval_on_train_input_config,
858
      model_config=model_config)
859
  predict_input_fn = create_predict_input_fn(
860
      model_config=model_config, predict_input_config=eval_input_configs[0])
861

862
  # Read export_to_tpu from hparams if not passed.
863
  if export_to_tpu is None and hparams is not None:
864
    export_to_tpu = hparams.get('export_to_tpu', False)
865
866
  tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s',
                  use_tpu, export_to_tpu)
867
868
  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu,
                              postprocess_on_cpu)
869
  if use_tpu_estimator:
870
    estimator = tf.estimator.tpu.TPUEstimator(
871
872
873
874
875
876
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
877
878
        export_to_tpu=export_to_tpu,
        eval_on_tpu=False,  # Eval runs on CPU, so disable eval on TPU
pkulzc's avatar
pkulzc committed
879
        params=params if params else {})
880
881
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
882

883
  # Write the as-run pipeline config to disk.
884
  if run_config.is_chief and save_final_config:
885
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
886
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
887

888
  return dict(
889
890
      estimator=estimator,
      train_input_fn=train_input_fn,
891
892
      eval_input_fns=eval_input_fns,
      eval_input_names=eval_input_names,
893
      eval_on_train_input_fn=eval_on_train_input_fn,
894
      predict_input_fn=predict_input_fn,
895
      train_steps=train_steps)
896
897
898


def create_train_and_eval_specs(train_input_fn,
899
                                eval_input_fns,
900
                                eval_on_train_input_fn,
901
902
903
904
                                predict_input_fn,
                                train_steps,
                                eval_on_train_data=False,
                                final_exporter_name='Servo',
905
                                eval_spec_names=None):
906
907
908
909
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
910
911
    eval_input_fns: A list of functions that produce features and labels on eval
      data.
912
913
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
914
915
916
917
918
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
    final_exporter_name: String name given to `FinalExporter`.
919
    eval_spec_names: A list of string names for each `EvalSpec`.
920
921

  Returns:
922
923
924
    Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is
    True, the last `EvalSpec` in the list will correspond to training data. The
    rest EvalSpecs in the list are evaluation datas.
925
926
927
928
  """
  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

929
  if eval_spec_names is None:
930
    eval_spec_names = [str(i) for i in range(len(eval_input_fns))]
931
932

  eval_specs = []
933
934
935
936
937
938
939
940
  for index, (eval_spec_name, eval_input_fn) in enumerate(
      zip(eval_spec_names, eval_input_fns)):
    # Uses final_exporter_name as exporter_name for the first eval spec for
    # backward compatibility.
    if index == 0:
      exporter_name = final_exporter_name
    else:
      exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name)
941
942
943
944
945
946
947
948
    exporter = tf.estimator.FinalExporter(
        name=exporter_name, serving_input_receiver_fn=predict_input_fn)
    eval_specs.append(
        tf.estimator.EvalSpec(
            name=eval_spec_name,
            input_fn=eval_input_fn,
            steps=None,
            exporters=exporter))
949
950
951
952

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
953
            name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None))
954
955

  return train_spec, eval_specs
956
957


958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
def _evaluate_checkpoint(estimator,
                         input_fn,
                         checkpoint_path,
                         name,
                         max_retries=0):
  """Evaluates a checkpoint.

  Args:
    estimator: Estimator object to use for evaluation.
    input_fn: Input function to use for evaluation.
    checkpoint_path: Path of the checkpoint to evaluate.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.

  Returns:
    Estimator evaluation results.
  """
  always_retry = True if max_retries < 0 else False
  retries = 0
  while always_retry or retries <= max_retries:
    try:
      return estimator.evaluate(
          input_fn=input_fn,
          steps=None,
          checkpoint_path=checkpoint_path,
          name=name)
    except tf.errors.InvalidArgumentError as e:
      if always_retry or retries < max_retries:
        tf.logging.info('Retrying checkpoint evaluation after exception: %s', e)
        retries += 1
      else:
        raise e


994
995
996
997
998
999
def continuous_eval_generator(estimator,
                              model_dir,
                              input_fn,
                              train_steps,
                              name,
                              max_retries=0):
1000
1001
1002
1003
1004
1005
1006
1007
1008
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
1009
1010
1011
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
1012
1013
1014

  Yields:
    Pair of current step and eval_results.
1015
  """
1016

1017
1018
1019
1020
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

1021
  for ckpt in tf.train.checkpoints_iterator(
1022
1023
1024
1025
1026
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
1027
1028
1029
1030
1031
1032
      eval_results = _evaluate_checkpoint(
          estimator=estimator,
          input_fn=input_fn,
          checkpoint_path=ckpt,
          name=name,
          max_retries=max_retries)
1033
1034
1035
1036
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
1037
      yield (current_step, eval_results)
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
def continuous_eval(estimator,
                    model_dir,
                    input_fn,
                    train_steps,
                    name,
                    max_retries=0):
  """Performs continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
  """
  for current_step, eval_results in continuous_eval_generator(
      estimator, model_dir, input_fn, train_steps, name, max_retries):
    tf.logging.info('Step %s, Eval results: %s', current_step, eval_results)


1072
1073
1074
1075
1076
1077
1078
1079
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
1080

1081
1082
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
1083

1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
1118
      save_final_config=True,
1119
1120
1121
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
1122
  eval_input_fns = train_and_eval_dict['eval_input_fns']
1123
1124
1125
1126
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']

  export_strategies = [
1127
      contrib_learn.utils.saved_model_export_utils.make_export_strategy(
1128
1129
1130
          serving_input_fn=predict_input_fn)
  ]

1131
  return contrib_learn.Experiment(
1132
1133
      estimator=estimator,
      train_input_fn=train_input_fn,
1134
      eval_input_fn=eval_input_fns[0],
1135
      train_steps=train_steps,
1136
      eval_steps=None,
1137
      export_strategies=export_strategies,
1138
1139
      eval_delay_secs=120,
  )