keras_imagenet_benchmark.py 37.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function

import os
19
import time
20
21

from absl import flags
22
import tensorflow as tf # pylint: disable=g-bad-import-order
23
24

from official.resnet import imagenet_main
Toby Boyd's avatar
Toby Boyd committed
25
from official.resnet.keras import keras_benchmark
26
27
28
from official.resnet.keras import keras_common
from official.resnet.keras import keras_imagenet_main

Toby Boyd's avatar
Toby Boyd committed
29
30
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
31

Toby Boyd's avatar
Toby Boyd committed
32
FLAGS = flags.FLAGS
33
34


Toby Boyd's avatar
Toby Boyd committed
35
36
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
37

38
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
39
40
41
42
43
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
44
45
46
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
47
48
    """

49
    flag_methods = [
50
51
        keras_common.define_keras_flags,
        lambda: imagenet_main.define_imagenet_flags(dynamic_loss_scale=True)
52
    ]
Toby Boyd's avatar
Toby Boyd committed
53

54
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
55
56
    super(Resnet50KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
57

Toby Boyd's avatar
Toby Boyd committed
58
  def benchmark_graph_8_gpu(self):
59
60
    """Test Keras model with Keras fit/dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
61
    FLAGS.num_gpus = 8
62
    FLAGS.data_dir = self.data_dir
63
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
64
    FLAGS.train_epochs = 90
65
    FLAGS.epochs_between_evals = 10
66
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
67
    FLAGS.dtype = 'fp32'
68
    FLAGS.use_tensor_lr = True
69
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
70
71

  def benchmark_8_gpu(self):
72
73
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
74
    FLAGS.num_gpus = 8
75
    FLAGS.data_dir = self.data_dir
76
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
77
    FLAGS.train_epochs = 90
78
    FLAGS.epochs_between_evals = 10
79
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
80
81
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
82
83
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
84
    FLAGS.use_tensor_lr = True
85
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
86

Reed's avatar
Reed committed
87
88
89
90
91
92
93
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with eager, dist_strat, 8 GPUs, and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
94
    FLAGS.epochs_between_evals = 10
Reed's avatar
Reed committed
95
96
97
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
98
99
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
100
    FLAGS.use_tensor_lr = True
Reed's avatar
Reed committed
101
102
103
104
105
106
107
108
109
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_fp16(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
110
    FLAGS.epochs_between_evals = 10
Reed's avatar
Reed committed
111
112
113
114
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
115
116
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
117
    FLAGS.use_tensor_lr = True
Reed's avatar
Reed committed
118
119
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
  def benchmark_8_gpu_mlperf_like_tweaked(self):
    """Test similar to the rules for MLPerf 0.5.

    Listed below are reasons this comparison is not to the MLSpec, but this is
    still a decent directional measurement:
      - Eval is every 4 epochs and again at the end. ~2 extra times.
      - Learning rate is not tuned to hit 75%, but we know the model is correct.
      - We measure total time and MLPerf 0.5 excluded some startup time.
      - Eval is not on the total set, need to set eval batch_size where
        8*batch_size/50K is even. 250 is a good number.
      - Not sure if we are doing any extra or too few steps due to epoch bleed.
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 61
    FLAGS.epochs_between_evals = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mlperf_like_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    # Tweaks to improve performance.
    FLAGS.data_delay_prefetch = True
    FLAGS.use_tensor_lr = True
    self._run_and_report_benchmark()

  def benchmark_8_gpu_mlperf_like(self):
    """Test similar to the rules for MLPerf 0.5.

    Listed below are reasons this comparison is not to the MLSpec, but this is
    still a decent directional measurement:
      - Eval is every 4 epochs and again at the end. ~2 extra times.
      - Learning rate is not tuned to hit 75%, but we know the model is correct.
      - We measure total time and MLPerf 0.5 excluded some startup time.
      - Eval is not on the total set, need to set eval batch_size where
        8*batch_size/50K is even. 250 is a good number.
      - Not sure if we are doing any extra or too few steps due to epoch bleed.
    """
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 61
    FLAGS.epochs_between_evals = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_mlperf_like')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

171
172
173
174
175
176
177
  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
178
    FLAGS.epochs_between_evals = 10
179
180
181
182
183
184
185
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.loss_scale = 'dynamic'
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
186
    FLAGS.use_tensor_lr = True
187
188
    self._run_and_report_benchmark()

189
190
191
192
193
194
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = keras_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
195
        stats,
196
        wall_time_sec,
Toby Boyd's avatar
Toby Boyd committed
197
198
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
199
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
200
        log_steps=100)
201
202
203
204

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

Toby Boyd's avatar
Toby Boyd committed
205
206
207
208
209

class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

  def __init__(self, output_dir=None, default_flags=None):
210
    flag_methods = [
211
212
        keras_common.define_keras_flags,
        lambda: imagenet_main.define_imagenet_flags(dynamic_loss_scale=True)
213
    ]
Toby Boyd's avatar
Toby Boyd committed
214
215
216
217
218
219

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

220
221
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
222
    stats = keras_imagenet_main.run(FLAGS)
223
    wall_time_sec = time.time() - start_time_sec
224
225
226
    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches in this case.
    warmup = (FLAGS.train_steps - 100) // FLAGS.log_steps
227
228
229
230
231

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
232
233
        log_steps=FLAGS.log_steps,
        warmup=warmup)
Toby Boyd's avatar
Toby Boyd committed
234
235

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
236
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
237
238
239
240
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
241
    FLAGS.distribution_strategy = 'off'
242
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
243
    FLAGS.batch_size = 128
244
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
245

246
247
248
249
250
251
252
253
254
255
256
257
258
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
259
  def benchmark_graph_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
260
    """Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
Toby Boyd's avatar
Toby Boyd committed
261
262
263
264
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
265
    FLAGS.distribution_strategy = 'off'
266
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
267
268
    FLAGS.batch_size = 96  # BatchNorm is less efficient in legacy graph mode
                           # due to its reliance on v1 cond.
269
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
270
271

  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
272
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
273
274
275
276
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
277
    FLAGS.distribution_strategy = 'default'
278
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
279
    FLAGS.batch_size = 128
280
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
281

Haoyu Zhang's avatar
Haoyu Zhang committed
282
283
284
285
286
287
288
289
290
291
292
293
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
294
  def benchmark_1_gpu_fp16(self):
295
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
296
297
298
299
300
301
302
303
304
305
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

306
307
308
309
310
311
312
313
314
315
316
317
318
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
319
320
321
322
323
324
325
326
327
328
329
330
331
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

332
333
334
335
336
337
338
339
340
341
342
  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
343
    FLAGS.use_tensor_lr = True
344
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    FLAGS.data_delay_prefetch = True
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_slack(self):
    """Test Keras model with XLA, 1 GPU, fp16, and tf.data's experimental_slack
       functionality."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_slack')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_data_experimental_slack = True
361
362
    self._run_and_report_benchmark()

363
364
365
366
367
368
369
370
371
372
373
374
375
376
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
377
  def benchmark_graph_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
378
    """Test Keras model in legacy graph mode with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
379
380
381
382
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
383
    FLAGS.distribution_strategy = 'default'
384
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
385
    FLAGS.batch_size = 128
386
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
387

Haoyu Zhang's avatar
Haoyu Zhang committed
388
389
390
391
392
393
394
395
396
397
398
399
  def benchmark_graph_xla_1_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

400
401
402
403
404
  def benchmark_graph_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
405
    FLAGS.dtype = 'fp16'
406
407
408
409
410
411
412
413
414
415
416
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16 and XLA."""
    self._setup()

    FLAGS.num_gpus = 1
417
    FLAGS.dtype = 'fp16'
418
419
420
421
422
423
424
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

425
426
427
428
429
430
431
432
433
434
435
436
437
438
  def benchmark_graph_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16, XLA, and manual
       config tuning.
    """
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
439
    FLAGS.use_tensor_lr = True
440
441
442
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
  def benchmark_graph_xla_1_gpu_fp16_slack(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16, XLA, and
       tf.data's experimental_slack functionality.
    """
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_1_gpu_fp16_slack')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_data_experimental_slack = True
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
460
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
461
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
462
463
464
465
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
466
    FLAGS.distribution_strategy = 'default'
467
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
468
    FLAGS.batch_size = 128 * 8  # 8 GPUs
469
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
470

471
472
  def benchmark_8_gpu_cloning(self):
    """Test Keras model with 8 GPUs and cloning."""
473
474
475
476
477
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
478
479
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_cloning')
480
481
482
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    self._run_and_report_benchmark()

483
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
484
    """Test Keras model with manual config tuning and 8 GPUs."""
485
486
487
488
489
490
491
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
492
    FLAGS.use_tensor_lr = True
493
    FLAGS.datasets_num_private_threads = 14
494
495
496
497
498
499
500
501
502
503
504
505
506
    FLAGS.data_delay_prefetch = True
    self._run_and_report_benchmark()

  def benchmark_8_gpu_slack(self):
    """Test Keras model with tf.data's experimental_slack and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_slack')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    FLAGS.tf_data_experimental_slack = True
507
508
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
509
510
511
512
513
514
515
516
517
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
518
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
519
520
    self._run_and_report_benchmark()

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
  def benchmark_xla_8_gpu_tweaked(self):
    """Test Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 24
    FLAGS.data_delay_prefetch = True
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
537
  def benchmark_8_gpu_fp16(self):
538
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
539
540
541
    self._setup()

    FLAGS.num_gpus = 8
542
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
543
544
545
546
547
548
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

549
550
551
552
553
554
555
556
557
558
559
560
561
  def benchmark_8_gpu_fp16_cloning(self):
    """Test Keras model with 8 GPUs, fp16 and cloning."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_cloning')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

562
  def benchmark_8_gpu_fp16_tweaked(self):
563
    """Test Keras model with 8 GPUs, fp16, and manual config tuning."""
564
565
566
567
568
569
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
570
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
571
    FLAGS.batch_size = 256 * 8  # 8 GPUs
572
    FLAGS.use_tensor_lr = True
573
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
574
    FLAGS.data_delay_prefetch = True
575
576
    self._run_and_report_benchmark()

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
  def benchmark_8_gpu_fp16_cloning_tweaked(self):
    """Test Keras model with 8 GPUs, fp16, cloning, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_cloning_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.data_delay_prefetch = True
    self._run_and_report_benchmark()

594
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
Toby Boyd's avatar
Toby Boyd committed
595
    """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
596
597
598
599
600
601
602
603
604
605
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
606
    FLAGS.use_tensor_lr = True
607
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
608
    FLAGS.data_delay_prefetch = True
609
610
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
611
  def benchmark_xla_8_gpu_fp16(self):
612
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
613
614
615
    self._setup()

    FLAGS.num_gpus = 8
616
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
617
618
619
620
621
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
622
623
624
625
626
627
628
629
630
631
632
633
634
635
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_fp16_cloning(self):
    """Test Keras model with XLA, 8 GPUs, fp16 and cloning."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_cloning')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
Reed's avatar
Reed committed
636
637
    self._run_and_report_benchmark()

638
639
640
641
642
643
644
645
646
647
648
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
649
    FLAGS.use_tensor_lr = True
650
    # FLAGS.tf_gpu_thread_mode = 'gpu_private'
651
652
653
    FLAGS.data_delay_prefetch = True
    self._run_and_report_benchmark()

654
  def benchmark_xla_8_gpu_fp16_cloning_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
655
    """Test with manual config tuning, XLA, 8 GPUs, fp16, and cloning."""
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_cloning_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    # FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.data_delay_prefetch = True
    self._run_and_report_benchmark()

672
  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
673
674
675
    """Test with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.data_delay_prefetch = True
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

693
  def benchmark_xla_8_gpu_fp16_cloning_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
694
695
696
    """Test with manual config tuning, XLA, 8 GPUs, fp16, and cloning.

    Delay performance measurement for stable performance on 96 vCPU platforms.
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.clone_model_in_keras_dist_strat = True
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_cloning_tweaked_delay_measure')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.data_delay_prefetch = True
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

715
  def benchmark_xla_8_gpu_fp16_tweaked_optional_next(self):
716
717
718
    """Test Keras model with manual config tuning, XLA, 8 GPUs, fp16.

    This test also enables get_next_as_optional.
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_optional_next')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.use_tensor_lr = True
    # FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.data_delay_prefetch = True
    FLAGS.enable_get_next_as_optional = True
    self._run_and_report_benchmark()

736
  def benchmark_xla_8_gpu_fp16_slack(self):
737
738
739
    """Test Keras model with XLA, 8 GPUs and fp16.

    This test also enable tf.data's experimental_slack functionality.
740
741
742
743
744
745
746
747
748
749
750
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_slack')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_data_experimental_slack = True
751
752
    self._run_and_report_benchmark()

753
754
755
756
757
758
759
760
761
762
763
764
765
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
766
    FLAGS.use_tensor_lr = True
767
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
768
    FLAGS.data_delay_prefetch = True
769
770
    self._run_and_report_benchmark()

771
772
773
774
775
776
777
778
779
780
781
782
  def benchmark_xla_8_gpu_fp16_tensorboard_tweaked(self):
    """Test to track Tensorboard performance overhead."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tensorboard_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
783
    FLAGS.use_tensor_lr = True
784
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
785
    FLAGS.data_delay_prefetch = True
786
787
788
    FLAGS.enable_tensorboard = True
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
789
  def benchmark_graph_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
790
    """Test Keras model in legacy graph mode with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
791
792
793
794
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
795
    FLAGS.distribution_strategy = 'default'
796
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
797
    FLAGS.batch_size = 128 * 8  # 8 GPUs
798
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
799

Haoyu Zhang's avatar
Haoyu Zhang committed
800
801
802
803
804
805
806
807
808
  def benchmark_graph_xla_8_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu')
809
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
810
811
    self._run_and_report_benchmark()

812
813
814
815
816
817
818
819
820
821
822
823
  def benchmark_graph_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

824
825
826
827
828
829
830
831
832
833
834
835
836
  def benchmark_graph_xla_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

837
838
839
840
841
842
843
844
845
846
847
848
  def benchmark_graph_8_gpu_fp16_tweaked(self):
    """Test Keras model in legacy graph mode with manual config tuning, 8 GPUs
       and fp16.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
849
    FLAGS.use_tensor_lr = True
850
851
852
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

853
854
855
856
857
858
859
860
861
862
863
864
865
866
  def benchmark_graph_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model in legacy graph mode with manual config tuning, XLA,
       8 GPUs and fp16.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
867
    FLAGS.use_tensor_lr = True
868
869
870
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

871
  def benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
872
873
874
    """Test in legacy graph mode with manual config tuning, XLA, 8 GPUs, fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked_delay_measure')
    FLAGS.batch_size = 256 * 8
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

891
  def benchmark_graph_xla_8_gpu_fp16_tweaked_optional_next(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
892
    """Test in legacy graph mode with manual config tuning, XLA, 8 GPUs, fp16.
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910

    This test also enables get_next_as_optional.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked_optional_next')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.use_tensor_lr = True
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.enable_get_next_as_optional = True
    self._run_and_report_benchmark()

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
  def benchmark_graph_xla_8_gpu_fp16_slack(self):
    """Test Keras model in legacy graph mode with tf.data's experimental_slack
       functionality, XLA, 8 GPUs and fp16.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_slack')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_data_experimental_slack = True
    self._run_and_report_benchmark()

928
929
930
931
932
933
934
935
936
937
938
939
  def benchmark_graph_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
940
    FLAGS.use_tensor_lr = True
941
942
943
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

944
945
946
947
948
949
950
951
952
953
954
955
  def benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
956
    FLAGS.use_tensor_lr = True
957
958
959
960
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
961
962
963
964
965
966
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
967
968
969
970

class Resnet50KerasBenchmarkSynth(Resnet50KerasBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

971
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
972
973
    def_flags = {}
    def_flags['skip_eval'] = True
974
    def_flags['report_accuracy_metrics'] = False
Toby Boyd's avatar
Toby Boyd committed
975
976
977
978
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

979
980
    super(Resnet50KerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
Toby Boyd's avatar
Toby Boyd committed
981
982
983
984
985


class Resnet50KerasBenchmarkReal(Resnet50KerasBenchmarkBase):
  """Resnet50 real data benchmark tests."""

986
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
987
988
    def_flags = {}
    def_flags['skip_eval'] = True
989
    def_flags['report_accuracy_metrics'] = False
990
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
Toby Boyd's avatar
Toby Boyd committed
991
992
993
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

994
995
    super(Resnet50KerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
996
997


998
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
999
1000
1001
1002
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    flag_methods = [
1003
1004
        keras_common.define_keras_flags,
        lambda: imagenet_main.define_imagenet_flags(dynamic_loss_scale=True)
1005
1006
1007
    ]
    def_flags = {}
    def_flags['skip_eval'] = True
1008
    def_flags['report_accuracy_metrics'] = False
1009
1010
1011
1012
1013
1014
1015
    def_flags['dtype'] = 'fp16'
    def_flags['enable_xla'] = True
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
    def_flags['distribution_strategy'] = 'default'

1016
    super(TrivialKerasBenchmarkReal, self).__init__(
1017
1018
1019
1020
1021
1022
1023
1024
1025
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = keras_imagenet_main.run(FLAGS)
    wall_time_sec = time.time() - start_time_sec

1026
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
1027
1028
1029
1030
1031
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
    FLAGS.batch_size = 256
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
  def benchmark_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

1057
    FLAGS.num_gpus = 1
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
    FLAGS.enable_eager = False
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_8_gpu(self):
    """Test trivial Keras model (input pipeline) with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_8_gpu_tweaked(self):
    """Test trivial Keras model (input pipeline) with manual config tuning and
       8 GPUs.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
    FLAGS.data_delay_prefetch = True
    self._run_and_report_benchmark()

  def benchmark_8_gpu_slack(self):
    """Test trivial Keras model (input pipeline) with tf.data's
       experimental_slack and 8 GPUs.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_slack')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_data_experimental_slack = True
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu(self):
    """Test trivial Keras model (input pipeline) in legacy graph mode with 8
       GPUs.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu_tweaked(self):
    """Test trivial Keras model (input pipeline) in legacy graph mode with
       manual config tuning and 8 GPUs.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

  def fill_report_object(self, stats):
1126
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
1127
1128
1129
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
1130
1131
1132
1133


if __name__ == '__main__':
  tf.test.main()