keras_imagenet_benchmark.py 21.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function

import os
19
import time
20
21

from absl import flags
22
import tensorflow as tf # pylint: disable=g-bad-import-order
23
24

from official.resnet import imagenet_main
Toby Boyd's avatar
Toby Boyd committed
25
from official.resnet.keras import keras_benchmark
26
27
28
from official.resnet.keras import keras_common
from official.resnet.keras import keras_imagenet_main

Toby Boyd's avatar
Toby Boyd committed
29
30
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
31

Toby Boyd's avatar
Toby Boyd committed
32
FLAGS = flags.FLAGS
33
34


Toby Boyd's avatar
Toby Boyd committed
35
36
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
37

38
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
39
40
41
42
43
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
44
45
46
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
47
48
    """

49
    flag_methods = [
50
51
        keras_common.define_keras_flags,
        lambda: imagenet_main.define_imagenet_flags(dynamic_loss_scale=True)
52
    ]
Toby Boyd's avatar
Toby Boyd committed
53

54
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
55
56
    super(Resnet50KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
57

Toby Boyd's avatar
Toby Boyd committed
58
  def benchmark_graph_8_gpu(self):
59
60
    """Test Keras model with Keras fit/dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
61
    FLAGS.num_gpus = 8
62
    FLAGS.data_dir = self.data_dir
63
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
64
    FLAGS.train_epochs = 90
65
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
66
    FLAGS.dtype = 'fp32'
67
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
68
69

  def benchmark_8_gpu(self):
70
71
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
72
    FLAGS.num_gpus = 8
73
    FLAGS.data_dir = self.data_dir
74
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
75
    FLAGS.train_epochs = 90
76
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
77
78
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
79
80
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
81
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
82

Reed's avatar
Reed committed
83
84
85
86
87
88
89
90
91
92
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with eager, dist_strat, 8 GPUs, and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
93
94
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
Reed's avatar
Reed committed
95
96
97
98
99
100
101
102
103
104
105
106
107
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_fp16(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
108
109
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
Reed's avatar
Reed committed
110
111
    self._run_and_report_benchmark()

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.loss_scale = 'dynamic'
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

128
129
130
131
132
133
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = keras_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
134
        stats,
135
        wall_time_sec,
Toby Boyd's avatar
Toby Boyd committed
136
137
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
138
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
139
        log_steps=100)
140
141
142
143

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

Toby Boyd's avatar
Toby Boyd committed
144
145
146
147
148

class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

  def __init__(self, output_dir=None, default_flags=None):
149
    flag_methods = [
150
151
        keras_common.define_keras_flags,
        lambda: imagenet_main.define_imagenet_flags(dynamic_loss_scale=True)
152
    ]
Toby Boyd's avatar
Toby Boyd committed
153
154
155
156
157
158

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

159
160
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
161
    stats = keras_imagenet_main.run(FLAGS)
162
163
164
165
166
167
168
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
Toby Boyd's avatar
Toby Boyd committed
169
170

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
171
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
172
173
174
175
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
176
    FLAGS.distribution_strategy = 'off'
177
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
178
    FLAGS.batch_size = 128
179
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
180
181

  def benchmark_graph_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
182
    """Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
Toby Boyd's avatar
Toby Boyd committed
183
184
185
186
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
187
    FLAGS.distribution_strategy = 'off'
188
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
189
    FLAGS.batch_size = 128
190
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
191
192

  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
193
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
194
195
196
197
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
198
    FLAGS.distribution_strategy = 'default'
199
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
200
    FLAGS.batch_size = 128
201
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
202

Haoyu Zhang's avatar
Haoyu Zhang committed
203
204
205
206
207
208
209
210
211
212
213
214
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
215
  def benchmark_1_gpu_fp16(self):
216
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
217
218
219
220
221
222
223
224
225
226
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

227
228
229
230
231
232
233
234
235
236
237
238
239
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
240
241
242
243
244
245
246
247
248
249
250
251
252
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

253
254
255
256
257
258
259
260
261
262
263
264
265
266
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
267
  def benchmark_graph_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
268
    """Test Keras model in legacy graph mode with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
269
270
271
272
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
273
    FLAGS.distribution_strategy = 'default'
274
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
275
    FLAGS.batch_size = 128
276
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
277

Haoyu Zhang's avatar
Haoyu Zhang committed
278
279
280
281
282
283
284
285
286
287
288
289
  def benchmark_graph_xla_1_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

290
291
292
293
294
  def benchmark_graph_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
295
    FLAGS.dtype = 'fp16'
296
297
298
299
300
301
302
303
304
305
306
    FLAGS.enable_eager = False
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_xla_1_gpu_fp16(self):
    """Test Keras model in legacy graph mode with 1 GPU, fp16 and XLA."""
    self._setup()

    FLAGS.num_gpus = 1
307
    FLAGS.dtype = 'fp16'
308
309
310
311
312
313
314
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu_fp16')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
315
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
316
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
317
318
319
320
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
321
    FLAGS.distribution_strategy = 'default'
322
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
323
    FLAGS.batch_size = 128 * 8  # 8 GPUs
324
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
325

326
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
327
    """Test Keras model with manual config tuning and 8 GPUs."""
328
329
330
331
332
333
334
335
336
337
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    FLAGS.datasets_num_private_threads = 14
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
338
339
340
341
342
343
344
345
346
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
347
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
348
349
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
350
  def benchmark_8_gpu_fp16(self):
351
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
352
353
354
    self._setup()

    FLAGS.num_gpus = 8
355
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
356
357
358
359
360
361
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

362
363
364
365
366
367
368
369
370
371
372
373
374
  def benchmark_8_gpu_fp16_tweaked(self):
    """Test Keras model with 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with 8 GPUs, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
390
  def benchmark_xla_8_gpu_fp16(self):
391
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
392
393
394
    self._setup()

    FLAGS.num_gpus = 8
395
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
396
397
398
399
400
401
402
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

403
404
405
406
407
408
409
410
411
412
413
414
415
416
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
  def benchmark_xla_8_gpu_fp16_tensorboard_tweaked(self):
    """Test to track Tensorboard performance overhead."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tensorboard_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.enable_tensorboard = True
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
449
  def benchmark_graph_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
450
    """Test Keras model in legacy graph mode with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
451
452
453
454
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
455
    FLAGS.distribution_strategy = 'default'
456
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
457
    FLAGS.batch_size = 128 * 8  # 8 GPUs
458
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
459

Haoyu Zhang's avatar
Haoyu Zhang committed
460
461
462
463
464
465
466
467
468
  def benchmark_graph_xla_8_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu')
469
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
470
471
    self._run_and_report_benchmark()

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
  def benchmark_graph_xla_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

  def benchmark_graph_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model in legacy graph mode with manual config tuning, XLA,
       8 GPUs and fp16.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
  def benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
518
519
520
521
522
523
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
524
525
526
527

class Resnet50KerasBenchmarkSynth(Resnet50KerasBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

528
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
529
530
531
532
533
534
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

535
536
    super(Resnet50KerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
Toby Boyd's avatar
Toby Boyd committed
537
538
539
540
541


class Resnet50KerasBenchmarkReal(Resnet50KerasBenchmarkBase):
  """Resnet50 real data benchmark tests."""

542
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
543
544
    def_flags = {}
    def_flags['skip_eval'] = True
545
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
Toby Boyd's avatar
Toby Boyd committed
546
547
548
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

549
550
    super(Resnet50KerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
551
552


553
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
554
555
556
557
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    flag_methods = [
558
559
        keras_common.define_keras_flags,
        lambda: imagenet_main.define_imagenet_flags(dynamic_loss_scale=True)
560
561
562
563
564
565
566
567
568
569
    ]
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['dtype'] = 'fp16'
    def_flags['enable_xla'] = True
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
    def_flags['distribution_strategy'] = 'default'

570
    super(TrivialKerasBenchmarkReal, self).__init__(
571
572
573
574
575
576
577
578
579
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = keras_imagenet_main.run(FLAGS)
    wall_time_sec = time.time() - start_time_sec

580
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
581
582
583
584
585
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

586
587
588
589
590
591
592
593
594
595
596
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
    FLAGS.batch_size = 256
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

597
598
599
600
601
602
603
604
605
606
607
608
609
610
  def benchmark_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

611
    FLAGS.num_gpus = 1
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    FLAGS.enable_eager = False
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_8_gpu(self):
    """Test trivial Keras model (input pipeline) with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_8_gpu_tweaked(self):
    """Test trivial Keras model (input pipeline) with manual config tuning and
       8 GPUs.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu(self):
    """Test trivial Keras model (input pipeline) in legacy graph mode with 8
       GPUs.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu_tweaked(self):
    """Test trivial Keras model (input pipeline) in legacy graph mode with
       manual config tuning and 8 GPUs.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

  def fill_report_object(self, stats):
666
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
667
668
669
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
670
671
672
673


if __name__ == '__main__':
  tf.test.main()