keras_imagenet_benchmark.py 20.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function

import os
19
import time
20
21
22
23

from absl import flags

from official.resnet import imagenet_main
Toby Boyd's avatar
Toby Boyd committed
24
from official.resnet.keras import keras_benchmark
25
26
27
from official.resnet.keras import keras_common
from official.resnet.keras import keras_imagenet_main

Toby Boyd's avatar
Toby Boyd committed
28
29
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
30

Toby Boyd's avatar
Toby Boyd committed
31
FLAGS = flags.FLAGS
32
33


Toby Boyd's avatar
Toby Boyd committed
34
35
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
36

37
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
38
39
40
41
42
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
43
44
45
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
46
47
    """

48
49
50
    flag_methods = [
        keras_common.define_keras_flags, imagenet_main.define_imagenet_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
51

52
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
53
54
    super(Resnet50KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
55

Toby Boyd's avatar
Toby Boyd committed
56
  def benchmark_graph_8_gpu(self):
57
58
    """Test Keras model with Keras fit/dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
59
    FLAGS.num_gpus = 8
60
    FLAGS.data_dir = self.data_dir
61
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
62
    FLAGS.train_epochs = 90
63
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
64
    FLAGS.dtype = 'fp32'
65
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
66
67

  def benchmark_8_gpu(self):
68
69
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
70
    FLAGS.num_gpus = 8
71
    FLAGS.data_dir = self.data_dir
72
    FLAGS.batch_size = 128 * 8
Toby Boyd's avatar
Toby Boyd committed
73
    FLAGS.train_epochs = 90
74
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
75
76
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
77
78
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
79
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
80

Reed's avatar
Reed committed
81
82
83
84
85
86
87
88
89
90
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with eager, dist_strat, 8 GPUs, and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
91
92
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
Reed's avatar
Reed committed
93
94
95
96
97
98
99
100
101
102
103
104
105
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_fp16(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
106
107
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
Reed's avatar
Reed committed
108
109
    self._run_and_report_benchmark()

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.loss_scale = 'dynamic'
    # Thread tuning to improve performance.
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

126
127
128
129
130
131
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = keras_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
132
        stats,
133
        wall_time_sec,
Toby Boyd's avatar
Toby Boyd committed
134
135
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
136
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
137
        log_steps=100)
138
139
140
141

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

Toby Boyd's avatar
Toby Boyd committed
142
143
144
145
146

class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

  def __init__(self, output_dir=None, default_flags=None):
147
148
149
    flag_methods = [
        keras_common.define_keras_flags, imagenet_main.define_imagenet_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
150
151
152
153
154
155

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

156
157
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
158
    stats = keras_imagenet_main.run(FLAGS)
159
160
161
162
163
164
165
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
Toby Boyd's avatar
Toby Boyd committed
166
167

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
168
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
169
170
171
172
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
173
    FLAGS.distribution_strategy = 'off'
174
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
175
    FLAGS.batch_size = 128
176
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
177
178

  def benchmark_graph_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
179
    """Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
Toby Boyd's avatar
Toby Boyd committed
180
181
182
183
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
184
    FLAGS.distribution_strategy = 'off'
185
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
186
    FLAGS.batch_size = 128
187
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
188
189

  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
190
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
191
192
193
194
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
195
    FLAGS.distribution_strategy = 'default'
196
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
197
    FLAGS.batch_size = 128
198
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
199

Haoyu Zhang's avatar
Haoyu Zhang committed
200
201
202
203
204
205
206
207
208
209
210
211
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
212
  def benchmark_1_gpu_fp16(self):
213
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
214
215
216
217
218
219
220
221
222
223
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

224
225
226
227
228
229
230
231
232
233
234
235
236
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
237
238
239
240
241
242
243
244
245
246
247
248
249
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

250
251
252
253
254
255
256
257
258
259
260
261
262
263
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
264
  def benchmark_graph_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
265
    """Test Keras model in legacy graph mode with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
266
267
268
269
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
270
    FLAGS.distribution_strategy = 'default'
271
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
272
    FLAGS.batch_size = 128
273
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
274

Haoyu Zhang's avatar
Haoyu Zhang committed
275
276
277
278
279
280
281
282
283
284
285
286
  def benchmark_graph_xla_1_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
287
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
288
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
289
290
291
292
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
293
    FLAGS.distribution_strategy = 'default'
294
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
295
    FLAGS.batch_size = 128 * 8  # 8 GPUs
296
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
297

298
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
299
    """Test Keras model with manual config tuning and 8 GPUs."""
300
301
302
303
304
305
306
307
308
309
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    FLAGS.datasets_num_private_threads = 14
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
310
311
312
313
314
315
316
317
318
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
319
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
320
321
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
322
  def benchmark_8_gpu_fp16(self):
323
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
324
325
326
    self._setup()

    FLAGS.num_gpus = 8
327
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
328
329
330
331
332
333
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

334
335
336
337
338
339
340
341
342
343
344
345
346
  def benchmark_8_gpu_fp16_tweaked(self):
    """Test Keras model with 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with 8 GPUs, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
362
  def benchmark_xla_8_gpu_fp16(self):
363
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
364
365
366
    self._setup()

    FLAGS.num_gpus = 8
367
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
368
369
370
371
372
373
374
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

375
376
377
378
379
380
381
382
383
384
385
386
387
388
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
  def benchmark_xla_8_gpu_fp16_tensorboard_tweaked(self):
    """Test to track Tensorboard performance overhead."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tensorboard_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.enable_tensorboard = True
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
421
  def benchmark_graph_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
422
    """Test Keras model in legacy graph mode with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
423
424
425
426
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
427
    FLAGS.distribution_strategy = 'default'
428
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
429
    FLAGS.batch_size = 128 * 8  # 8 GPUs
430
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
431

Haoyu Zhang's avatar
Haoyu Zhang committed
432
433
434
435
436
437
438
439
440
  def benchmark_graph_xla_8_gpu(self):
    """Test Keras model in legacy graph mode with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu')
441
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
442
443
    self._run_and_report_benchmark()

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
  def benchmark_graph_xla_8_gpu_fp16(self):
    """Test Keras model in legacy graph mode with XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

  def benchmark_graph_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model in legacy graph mode with manual config tuning, XLA,
       8 GPUs and fp16.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
  def benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test graph Keras with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = False
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'default'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_graph_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
490
491
492
493
494
495
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
496
497
498
499

class Resnet50KerasBenchmarkSynth(Resnet50KerasBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

500
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
501
502
503
504
505
506
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

507
508
    super(Resnet50KerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
Toby Boyd's avatar
Toby Boyd committed
509
510
511
512
513


class Resnet50KerasBenchmarkReal(Resnet50KerasBenchmarkBase):
  """Resnet50 real data benchmark tests."""

514
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
515
516
    def_flags = {}
    def_flags['skip_eval'] = True
517
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
Toby Boyd's avatar
Toby Boyd committed
518
519
520
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

521
522
    super(Resnet50KerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
523
524


525
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    flag_methods = [
        keras_common.define_keras_flags, imagenet_main.define_imagenet_flags
    ]
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['dtype'] = 'fp16'
    def_flags['enable_xla'] = True
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
    def_flags['distribution_strategy'] = 'default'

541
    super(TrivialKerasBenchmarkReal, self).__init__(
542
543
544
545
546
547
548
549
550
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
    stats = keras_imagenet_main.run(FLAGS)
    wall_time_sec = time.time() - start_time_sec

551
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
552
553
554
555
556
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

557
558
559
560
561
562
563
564
565
566
567
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
    FLAGS.batch_size = 256
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

568
569
570
571
572
573
574
575
576
577
578
579
580
581
  def benchmark_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_graph_1_gpu(self):
    """Test trivial Keras model (input pipeline) with 1 GPU."""
    self._setup()

582
    FLAGS.num_gpus = 1
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    FLAGS.enable_eager = False
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

  def benchmark_8_gpu(self):
    """Test trivial Keras model (input pipeline) with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_8_gpu_tweaked(self):
    """Test trivial Keras model (input pipeline) with manual config tuning and
       8 GPUs.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu(self):
    """Test trivial Keras model (input pipeline) in legacy graph mode with 8
       GPUs.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu')
    FLAGS.batch_size = 256 * 8
    self._run_and_report_benchmark()

  def benchmark_graph_8_gpu_tweaked(self):
    """Test trivial Keras model (input pipeline) in legacy graph mode with
       manual config tuning and 8 GPUs.
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = False
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_8_gpu_tweaked')
    FLAGS.batch_size = 256 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._run_and_report_benchmark()

  def fill_report_object(self, stats):
637
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
638
639
640
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)