xlnet_test.py 12.8 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for XLNet classifier network."""

from absl.testing import parameterized

import numpy as np
import tensorflow as tf

from tensorflow.python.keras import keras_parameterized  # pylint: disable=g-direct-tensorflow-import
from official.nlp.modeling import networks
from official.nlp.modeling.models import xlnet


def _get_xlnet_base() -> tf.keras.layers.Layer:
  """Returns a trivial base XLNet model."""
  return networks.XLNetBase(
      vocab_size=100,
      num_layers=2,
      hidden_size=4,
      num_attention_heads=2,
      head_size=2,
      inner_size=2,
      dropout_rate=0.,
      attention_dropout_rate=0.,
      attention_type='bi',
      bi_data=True,
      initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
      two_stream=False,
      tie_attention_biases=True,
      reuse_length=0,
      inner_activation='relu')


# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
Allen Wang's avatar
Allen Wang committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
@keras_parameterized.run_all_keras_modes
class XLNetMaskedLMTest(keras_parameterized.TestCase):

  def test_xlnet_masked_lm_head(self):
    hidden_size = 10
    seq_length = 8
    batch_size = 2
    masked_lm = xlnet.XLNetMaskedLM(vocab_size=10,
                                    hidden_size=hidden_size,
                                    initializer='glorot_uniform')
    sequence_data = np.random.uniform(size=(batch_size, seq_length))
    embedding_table = np.random.uniform(size=(hidden_size, hidden_size))
    mlm_output = masked_lm(sequence_data, embedding_table)
    self.assertAllClose(mlm_output.shape, (batch_size, hidden_size))


@keras_parameterized.run_all_keras_modes
class XLNetPretrainerTest(keras_parameterized.TestCase):

  def test_xlnet_trainer(self):
    """Validates that the Keras object can be created."""
    seq_length = 4
    num_predictions = 2
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetPretrainer(network=xlnet_base)
    inputs = dict(
        input_word_ids=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.int32, name='input_word_ids'),
        input_type_ids=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.int32, name='input_type_ids'),
        input_mask=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.int32, name='input_mask'),
        permutation_mask=tf.keras.layers.Input(
            shape=(seq_length, seq_length,), dtype=tf.int32,
            name='permutation_mask'),
        target_mapping=tf.keras.layers.Input(
            shape=(num_predictions, seq_length), dtype=tf.int32,
            name='target_mapping'),
        masked_tokens=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.int32, name='masked_tokens'))
    logits, _ = xlnet_trainer_model(inputs)

    # [None, hidden_size, vocab_size]
    expected_output_shape = [None, 4, 100]
    self.assertAllEqual(expected_output_shape, logits.shape.as_list())

  def test_xlnet_tensor_call(self):
    """Validates that the Keras object can be invoked."""
    seq_length = 4
    batch_size = 2
    num_predictions = 2
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetPretrainer(network=xlnet_base)

    sequence_shape = (batch_size, seq_length)
    inputs = dict(
        input_word_ids=np.random.randint(
            10, size=sequence_shape, dtype='int32'),
        input_type_ids=np.random.randint(2, size=sequence_shape, dtype='int32'),
        input_mask=np.random.randint(2, size=sequence_shape).astype('int32'),
        permutation_mask=np.random.randint(
            2, size=(batch_size, seq_length, seq_length)).astype('int32'),
        target_mapping=np.random.randint(
            10, size=(num_predictions, seq_length), dtype='int32'),
        masked_tokens=np.random.randint(
            10, size=sequence_shape, dtype='int32'))
    xlnet_trainer_model(inputs)

  def test_serialize_deserialize(self):
    """Validates that the XLNet trainer can be serialized and deserialized."""
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetPretrainer(
        network=xlnet_base,
        mlm_activation='gelu',
        mlm_initializer='random_normal')

    # Create another XLNet trainer via serialization and deserialization.
    config = xlnet_trainer_model.get_config()
    new_xlnet_trainer_model = xlnet.XLNetPretrainer.from_config(
        config)

    # Validate that the config can be forced to JSON.
    _ = new_xlnet_trainer_model.to_json()

    # If serialization was successful, then the new config should match the old.
    self.assertAllEqual(xlnet_trainer_model.get_config(),
                        new_xlnet_trainer_model.get_config())


Allen Wang's avatar
Allen Wang committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
@keras_parameterized.run_all_keras_modes
class XLNetClassifierTest(keras_parameterized.TestCase):

  def test_xlnet_trainer(self):
    """Validate that the Keras object can be created."""
    num_classes = 2
    seq_length = 4
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetClassifier(
        network=xlnet_base,
        num_classes=num_classes,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        summary_type='last',
        dropout_rate=0.1)
    inputs = dict(
Allen Wang's avatar
Allen Wang committed
165
        input_word_ids=tf.keras.layers.Input(
Allen Wang's avatar
Allen Wang committed
166
            shape=(seq_length,), dtype=tf.int32, name='input_word_ids'),
Allen Wang's avatar
Allen Wang committed
167
168
        input_type_ids=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.int32, name='input_type_ids'),
Allen Wang's avatar
Allen Wang committed
169
        input_mask=tf.keras.layers.Input(
Allen Wang's avatar
Allen Wang committed
170
            shape=(seq_length,), dtype=tf.int32, name='input_mask'),
Allen Wang's avatar
Allen Wang committed
171
        permutation_mask=tf.keras.layers.Input(
Allen Wang's avatar
Allen Wang committed
172
            shape=(seq_length, seq_length,), dtype=tf.int32,
Allen Wang's avatar
Allen Wang committed
173
174
            name='permutation_mask'),
        masked_tokens=tf.keras.layers.Input(
Allen Wang's avatar
Allen Wang committed
175
            shape=(seq_length,), dtype=tf.int32, name='masked_tokens'))
Allen Wang's avatar
Allen Wang committed
176
    logits = xlnet_trainer_model(inputs)
Allen Wang's avatar
Allen Wang committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

    expected_classification_shape = [None, num_classes]
    self.assertAllEqual(expected_classification_shape, logits.shape.as_list())

  @parameterized.parameters(1, 2)
  def test_xlnet_tensor_call(self, num_classes):
    """Validates that the Keras object can be invoked."""
    seq_length = 4
    batch_size = 2
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetClassifier(
        network=xlnet_base,
        num_classes=num_classes,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        summary_type='last',
        dropout_rate=0.1)

    sequence_shape = (batch_size, seq_length)
    inputs = dict(
Allen Wang's avatar
Allen Wang committed
199
200
201
        input_word_ids=np.random.randint(
            10, size=sequence_shape, dtype='int32'),
        input_type_ids=np.random.randint(2, size=sequence_shape, dtype='int32'),
Allen Wang's avatar
Allen Wang committed
202
        input_mask=np.random.randint(2, size=sequence_shape).astype('int32'),
Allen Wang's avatar
Allen Wang committed
203
        permutation_mask=np.random.randint(
Allen Wang's avatar
Allen Wang committed
204
205
206
            2, size=(batch_size, seq_length, seq_length)).astype('int32'),
        masked_tokens=np.random.randint(
            10, size=sequence_shape, dtype='int32'))
Allen Wang's avatar
Allen Wang committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    xlnet_trainer_model(inputs)

  def test_serialize_deserialize(self):
    """Validates that the XLNet trainer can be serialized and deserialized."""
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetClassifier(
        network=xlnet_base,
        num_classes=2,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        summary_type='last',
        dropout_rate=0.1)

    # Create another XLNet trainer via serialization and deserialization.
    config = xlnet_trainer_model.get_config()
    new_xlnet_trainer_model = xlnet.XLNetClassifier.from_config(
        config)

    # Validate that the config can be forced to JSON.
    _ = new_xlnet_trainer_model.to_json()

    # If serialization was successful, then the new config should match the old.
    self.assertAllEqual(xlnet_trainer_model.get_config(),
                        new_xlnet_trainer_model.get_config())


Allen Wang's avatar
Allen Wang committed
235
236
237
@keras_parameterized.run_all_keras_modes
class XLNetSpanLabelerTest(keras_parameterized.TestCase):

Allen Wang's avatar
Allen Wang committed
238
  def test_xlnet_trainer(self):
Allen Wang's avatar
Allen Wang committed
239
    """Validate that the Keras object can be created."""
Allen Wang's avatar
Allen Wang committed
240
    top_n = 2
Allen Wang's avatar
Allen Wang committed
241
242
243
244
245
246
247
248
249
250
251
252
253
    seq_length = 4
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetSpanLabeler(
        network=xlnet_base,
        start_n_top=top_n,
        end_n_top=top_n,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        span_labeling_activation='tanh',
        dropout_rate=0.1)
    inputs = dict(
Allen Wang's avatar
Allen Wang committed
254
        input_word_ids=tf.keras.layers.Input(
Allen Wang's avatar
Allen Wang committed
255
            shape=(seq_length,), dtype=tf.int32, name='input_word_ids'),
Allen Wang's avatar
Allen Wang committed
256
257
        input_type_ids=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.int32, name='input_type_ids'),
Allen Wang's avatar
Allen Wang committed
258
        input_mask=tf.keras.layers.Input(
Allen Wang's avatar
Allen Wang committed
259
            shape=(seq_length,), dtype=tf.int32, name='input_mask'),
Allen Wang's avatar
Allen Wang committed
260
        paragraph_mask=tf.keras.layers.Input(
Allen Wang's avatar
Allen Wang committed
261
            shape=(seq_length,), dtype=tf.int32, name='paragraph_mask'),
Allen Wang's avatar
Allen Wang committed
262
263
264
265
        class_index=tf.keras.layers.Input(
            shape=(), dtype=tf.int32, name='class_index'),
        start_positions=tf.keras.layers.Input(
            shape=(), dtype=tf.int32, name='start_positions'))
Allen Wang's avatar
Allen Wang committed
266
    outputs = xlnet_trainer_model(inputs)
Allen Wang's avatar
Allen Wang committed
267
268
269
270
271
272
    self.assertIsInstance(outputs, dict)

    # Test tensor value calls for the created model.
    batch_size = 2
    sequence_shape = (batch_size, seq_length)
    inputs = dict(
Allen Wang's avatar
Allen Wang committed
273
274
275
        input_word_ids=np.random.randint(
            10, size=sequence_shape, dtype='int32'),
        input_type_ids=np.random.randint(2, size=sequence_shape, dtype='int32'),
Allen Wang's avatar
Allen Wang committed
276
        input_mask=np.random.randint(2, size=sequence_shape).astype('int32'),
Allen Wang's avatar
Allen Wang committed
277
        paragraph_mask=np.random.randint(
Allen Wang's avatar
Allen Wang committed
278
            1, size=(sequence_shape)).astype('int32'),
Allen Wang's avatar
Allen Wang committed
279
280
281
        class_index=np.random.randint(1, size=(batch_size)).astype('uint8'),
        start_positions=tf.random.uniform(
            shape=(batch_size,), maxval=5, dtype=tf.int32))
Allen Wang's avatar
Allen Wang committed
282
283
284
285

    common_keys = {
        'start_logits', 'end_logits', 'start_predictions', 'end_predictions',
        'class_logits',
Allen Wang's avatar
Allen Wang committed
286
    }
Allen Wang's avatar
Allen Wang committed
287
288
289
290
291
292
293
    inference_keys = {
        'start_top_predictions', 'end_top_predictions', 'start_top_index',
        'end_top_index',
    }

    outputs = xlnet_trainer_model(inputs)
    self.assertSetEqual(common_keys | inference_keys, set(outputs.keys()))
Allen Wang's avatar
Allen Wang committed
294

Allen Wang's avatar
Allen Wang committed
295
    outputs = xlnet_trainer_model(inputs, training=True)
Allen Wang's avatar
Allen Wang committed
296
    self.assertIsInstance(outputs, dict)
Allen Wang's avatar
Allen Wang committed
297
    self.assertSetEqual(common_keys, set(outputs.keys()))
Allen Wang's avatar
Allen Wang committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    self.assertIsInstance(outputs, dict)

  def test_serialize_deserialize(self):
    """Validates that the XLNet trainer can be serialized and deserialized."""
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetSpanLabeler(
        network=xlnet_base,
        start_n_top=2,
        end_n_top=2,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        span_labeling_activation='tanh',
        dropout_rate=0.1)

    # Create another XLNet trainer via serialization and deserialization.
    config = xlnet_trainer_model.get_config()
    new_xlnet_trainer_model = xlnet.XLNetSpanLabeler.from_config(
        config)

    # Validate that the config can be forced to JSON.
    _ = new_xlnet_trainer_model.to_json()

    # If serialization was successful, then the new config should match the old.
    self.assertAllEqual(xlnet_trainer_model.get_config(),
                        new_xlnet_trainer_model.get_config())


Allen Wang's avatar
Allen Wang committed
327
328
if __name__ == '__main__':
  tf.test.main()