xlnet_test.py 8.82 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for XLNet classifier network."""

from absl.testing import parameterized

import numpy as np
import tensorflow as tf

from tensorflow.python.keras import keras_parameterized  # pylint: disable=g-direct-tensorflow-import
from official.nlp.modeling import networks
from official.nlp.modeling.models import xlnet


def _get_xlnet_base() -> tf.keras.layers.Layer:
  """Returns a trivial base XLNet model."""
  return networks.XLNetBase(
      vocab_size=100,
      num_layers=2,
      hidden_size=4,
      num_attention_heads=2,
      head_size=2,
      inner_size=2,
      dropout_rate=0.,
      attention_dropout_rate=0.,
      attention_type='bi',
      bi_data=True,
      initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
      two_stream=False,
      tie_attention_biases=True,
      reuse_length=0,
      inner_activation='relu')


# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@keras_parameterized.run_all_keras_modes
class XLNetClassifierTest(keras_parameterized.TestCase):

  def test_xlnet_trainer(self):
    """Validate that the Keras object can be created."""
    num_classes = 2
    seq_length = 4
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetClassifier(
        network=xlnet_base,
        num_classes=num_classes,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        summary_type='last',
        dropout_rate=0.1)
    inputs = dict(
Allen Wang's avatar
Allen Wang committed
67
        input_word_ids=tf.keras.layers.Input(
Allen Wang's avatar
Allen Wang committed
68
            shape=(seq_length,), dtype=tf.int32, name='input_word_ids'),
Allen Wang's avatar
Allen Wang committed
69
70
        input_type_ids=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.int32, name='input_type_ids'),
Allen Wang's avatar
Allen Wang committed
71
72
73
74
75
76
77
78
        input_mask=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.float32, name='input_mask'),
        permutation_mask=tf.keras.layers.Input(
            shape=(seq_length, seq_length,), dtype=tf.float32,
            name='permutation_mask'),
        masked_tokens=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.float32, name='masked_tokens'))

Allen Wang's avatar
Allen Wang committed
79
    logits = xlnet_trainer_model(inputs)
Allen Wang's avatar
Allen Wang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

    expected_classification_shape = [None, num_classes]
    self.assertAllEqual(expected_classification_shape, logits.shape.as_list())

  @parameterized.parameters(1, 2)
  def test_xlnet_tensor_call(self, num_classes):
    """Validates that the Keras object can be invoked."""
    seq_length = 4
    batch_size = 2
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetClassifier(
        network=xlnet_base,
        num_classes=num_classes,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        summary_type='last',
        dropout_rate=0.1)

    sequence_shape = (batch_size, seq_length)
    inputs = dict(
Allen Wang's avatar
Allen Wang committed
102
103
104
        input_word_ids=np.random.randint(
            10, size=sequence_shape, dtype='int32'),
        input_type_ids=np.random.randint(2, size=sequence_shape, dtype='int32'),
Allen Wang's avatar
Allen Wang committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        input_mask=np.random.randint(2, size=sequence_shape).astype('float32'),
        permutation_mask=np.random.randint(
            2, size=(batch_size, seq_length, seq_length)).astype('float32'),
        masked_tokens=tf.random.uniform(shape=sequence_shape))
    xlnet_trainer_model(inputs)

  def test_serialize_deserialize(self):
    """Validates that the XLNet trainer can be serialized and deserialized."""
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetClassifier(
        network=xlnet_base,
        num_classes=2,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        summary_type='last',
        dropout_rate=0.1)

    # Create another XLNet trainer via serialization and deserialization.
    config = xlnet_trainer_model.get_config()
    new_xlnet_trainer_model = xlnet.XLNetClassifier.from_config(
        config)

    # Validate that the config can be forced to JSON.
    _ = new_xlnet_trainer_model.to_json()

    # If serialization was successful, then the new config should match the old.
    self.assertAllEqual(xlnet_trainer_model.get_config(),
                        new_xlnet_trainer_model.get_config())


Allen Wang's avatar
Allen Wang committed
137
138
139
@keras_parameterized.run_all_keras_modes
class XLNetSpanLabelerTest(keras_parameterized.TestCase):

Allen Wang's avatar
Allen Wang committed
140
  def test_xlnet_trainer(self):
Allen Wang's avatar
Allen Wang committed
141
    """Validate that the Keras object can be created."""
Allen Wang's avatar
Allen Wang committed
142
    top_n = 2
Allen Wang's avatar
Allen Wang committed
143
144
145
146
147
148
149
150
151
152
153
154
155
    seq_length = 4
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetSpanLabeler(
        network=xlnet_base,
        start_n_top=top_n,
        end_n_top=top_n,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        span_labeling_activation='tanh',
        dropout_rate=0.1)
    inputs = dict(
Allen Wang's avatar
Allen Wang committed
156
        input_word_ids=tf.keras.layers.Input(
Allen Wang's avatar
Allen Wang committed
157
            shape=(seq_length,), dtype=tf.int32, name='input_word_ids'),
Allen Wang's avatar
Allen Wang committed
158
159
        input_type_ids=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.int32, name='input_type_ids'),
Allen Wang's avatar
Allen Wang committed
160
161
        input_mask=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.float32, name='input_mask'),
Allen Wang's avatar
Allen Wang committed
162
163
        paragraph_mask=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.float32, name='paragraph_mask'),
Allen Wang's avatar
Allen Wang committed
164
165
166
167
        class_index=tf.keras.layers.Input(
            shape=(), dtype=tf.int32, name='class_index'),
        start_positions=tf.keras.layers.Input(
            shape=(), dtype=tf.int32, name='start_positions'))
Allen Wang's avatar
Allen Wang committed
168
    outputs = xlnet_trainer_model(inputs)
Allen Wang's avatar
Allen Wang committed
169
170
171
172
173
174
    self.assertIsInstance(outputs, dict)

    # Test tensor value calls for the created model.
    batch_size = 2
    sequence_shape = (batch_size, seq_length)
    inputs = dict(
Allen Wang's avatar
Allen Wang committed
175
176
177
        input_word_ids=np.random.randint(
            10, size=sequence_shape, dtype='int32'),
        input_type_ids=np.random.randint(2, size=sequence_shape, dtype='int32'),
Allen Wang's avatar
Allen Wang committed
178
        input_mask=np.random.randint(2, size=sequence_shape).astype('float32'),
Allen Wang's avatar
Allen Wang committed
179
        paragraph_mask=np.random.randint(
Allen Wang's avatar
Allen Wang committed
180
181
182
183
            1, size=(sequence_shape)).astype('float32'),
        class_index=np.random.randint(1, size=(batch_size)).astype('uint8'),
        start_positions=tf.random.uniform(
            shape=(batch_size,), maxval=5, dtype=tf.int32))
Allen Wang's avatar
Allen Wang committed
184
185
186
187

    common_keys = {
        'start_logits', 'end_logits', 'start_predictions', 'end_predictions',
        'class_logits',
Allen Wang's avatar
Allen Wang committed
188
    }
Allen Wang's avatar
Allen Wang committed
189
190
191
192
193
194
195
    inference_keys = {
        'start_top_predictions', 'end_top_predictions', 'start_top_index',
        'end_top_index',
    }

    outputs = xlnet_trainer_model(inputs)
    self.assertSetEqual(common_keys | inference_keys, set(outputs.keys()))
Allen Wang's avatar
Allen Wang committed
196

Allen Wang's avatar
Allen Wang committed
197
    outputs = xlnet_trainer_model(inputs, training=True)
Allen Wang's avatar
Allen Wang committed
198
    self.assertIsInstance(outputs, dict)
Allen Wang's avatar
Allen Wang committed
199
    self.assertSetEqual(common_keys, set(outputs.keys()))
Allen Wang's avatar
Allen Wang committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    self.assertIsInstance(outputs, dict)

  def test_serialize_deserialize(self):
    """Validates that the XLNet trainer can be serialized and deserialized."""
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetSpanLabeler(
        network=xlnet_base,
        start_n_top=2,
        end_n_top=2,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        span_labeling_activation='tanh',
        dropout_rate=0.1)

    # Create another XLNet trainer via serialization and deserialization.
    config = xlnet_trainer_model.get_config()
    new_xlnet_trainer_model = xlnet.XLNetSpanLabeler.from_config(
        config)

    # Validate that the config can be forced to JSON.
    _ = new_xlnet_trainer_model.to_json()

    # If serialization was successful, then the new config should match the old.
    self.assertAllEqual(xlnet_trainer_model.get_config(),
                        new_xlnet_trainer_model.get_config())


Allen Wang's avatar
Allen Wang committed
229
230
if __name__ == '__main__':
  tf.test.main()