xlnet_test.py 5.15 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for XLNet classifier network."""

from absl.testing import parameterized

import numpy as np
import tensorflow as tf

from tensorflow.python.keras import keras_parameterized  # pylint: disable=g-direct-tensorflow-import
from official.nlp.modeling import networks
from official.nlp.modeling.models import xlnet


def _get_xlnet_base() -> tf.keras.layers.Layer:
  """Returns a trivial base XLNet model."""
  return networks.XLNetBase(
      vocab_size=100,
      num_layers=2,
      hidden_size=4,
      num_attention_heads=2,
      head_size=2,
      inner_size=2,
      dropout_rate=0.,
      attention_dropout_rate=0.,
      attention_type='bi',
      bi_data=True,
      initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
      two_stream=False,
      tie_attention_biases=True,
      reuse_length=0,
      inner_activation='relu')


# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@keras_parameterized.run_all_keras_modes
class XLNetClassifierTest(keras_parameterized.TestCase):

  def test_xlnet_trainer(self):
    """Validate that the Keras object can be created."""
    num_classes = 2
    seq_length = 4
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetClassifier(
        network=xlnet_base,
        num_classes=num_classes,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        summary_type='last',
        dropout_rate=0.1)
    inputs = dict(
        input_ids=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.int32, name='input_word_ids'),
        segment_ids=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.int32, name='segment_ids'),
        input_mask=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.float32, name='input_mask'),
        permutation_mask=tf.keras.layers.Input(
            shape=(seq_length, seq_length,), dtype=tf.float32,
            name='permutation_mask'),
        masked_tokens=tf.keras.layers.Input(
            shape=(seq_length,), dtype=tf.float32, name='masked_tokens'))

    logits, _ = xlnet_trainer_model(inputs)

    expected_classification_shape = [None, num_classes]
    self.assertAllEqual(expected_classification_shape, logits.shape.as_list())

  @parameterized.parameters(1, 2)
  def test_xlnet_tensor_call(self, num_classes):
    """Validates that the Keras object can be invoked."""
    seq_length = 4
    batch_size = 2
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetClassifier(
        network=xlnet_base,
        num_classes=num_classes,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        summary_type='last',
        dropout_rate=0.1)

    sequence_shape = (batch_size, seq_length)
    inputs = dict(
        input_ids=np.random.randint(10, size=sequence_shape, dtype='int32'),
        segment_ids=np.random.randint(2, size=sequence_shape, dtype='int32'),
        input_mask=np.random.randint(2, size=sequence_shape).astype('float32'),
        permutation_mask=np.random.randint(
            2, size=(batch_size, seq_length, seq_length)).astype('float32'),
        masked_tokens=tf.random.uniform(shape=sequence_shape))
    xlnet_trainer_model(inputs)

  def test_serialize_deserialize(self):
    """Validates that the XLNet trainer can be serialized and deserialized."""
    # Build a simple XLNet based network to use with the XLNet trainer.
    xlnet_base = _get_xlnet_base()

    # Create an XLNet trainer with the created network.
    xlnet_trainer_model = xlnet.XLNetClassifier(
        network=xlnet_base,
        num_classes=2,
        initializer=tf.keras.initializers.RandomNormal(stddev=0.1),
        summary_type='last',
        dropout_rate=0.1)

    # Create another XLNet trainer via serialization and deserialization.
    config = xlnet_trainer_model.get_config()
    new_xlnet_trainer_model = xlnet.XLNetClassifier.from_config(
        config)

    # Validate that the config can be forced to JSON.
    _ = new_xlnet_trainer_model.to_json()

    # If serialization was successful, then the new config should match the old.
    self.assertAllEqual(xlnet_trainer_model.get_config(),
                        new_xlnet_trainer_model.get_config())


if __name__ == '__main__':
  tf.test.main()