Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
bdaa525b
"tests/vscode:/vscode.git/clone" did not exist on "9e234d8048e5b9f631937f6dcdec364952e4f90e"
Commit
bdaa525b
authored
Jul 24, 2020
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Jul 24, 2020
Browse files
Fix typo.
PiperOrigin-RevId: 322960082
parent
58a0c81c
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
8 additions
and
8 deletions
+8
-8
official/nlp/modeling/layers/masked_lm.py
official/nlp/modeling/layers/masked_lm.py
+1
-1
official/nlp/modeling/networks/classification.py
official/nlp/modeling/networks/classification.py
+2
-2
official/nlp/modeling/networks/span_labeling.py
official/nlp/modeling/networks/span_labeling.py
+2
-2
official/nlp/modeling/networks/token_classification.py
official/nlp/modeling/networks/token_classification.py
+2
-2
official/nlp/xlnet/xlnet_modeling.py
official/nlp/xlnet/xlnet_modeling.py
+1
-1
No files found.
official/nlp/modeling/layers/masked_lm.py
View file @
bdaa525b
...
...
@@ -34,7 +34,7 @@ class MaskedLM(tf.keras.layers.Layer):
Arguments:
embedding_table: The embedding table of the targets.
activation: The activation, if any, for the dense layer.
initializer: The intializer for the dense layer. Defaults to a Glorot
initializer: The in
i
tializer for the dense layer. Defaults to a Glorot
uniform initializer.
output: The output style for this network. Can be either 'logits' or
'predictions'.
...
...
official/nlp/modeling/networks/classification.py
View file @
bdaa525b
...
...
@@ -37,8 +37,8 @@ class Classification(tf.keras.Model):
num_classes: The number of classes that this network should classify to. If
equal to 1, a regression problem is assumed.
activation: The activation, if any, for the dense layer in this network.
initializer: The intializer for the dense layer in this network. Defaults
to
a Glorot uniform initializer.
initializer: The in
i
tializer for the dense layer in this network. Defaults
to
a Glorot uniform initializer.
output: The output style for this network. Can be either 'logits' or
'predictions'.
"""
...
...
official/nlp/modeling/networks/span_labeling.py
View file @
bdaa525b
...
...
@@ -33,8 +33,8 @@ class SpanLabeling(tf.keras.Model):
Arguments:
input_width: The innermost dimension of the input tensor to this network.
activation: The activation, if any, for the dense layer in this network.
initializer: The intializer for the dense layer in this network. Defaults
to
a Glorot uniform initializer.
initializer: The in
i
tializer for the dense layer in this network. Defaults
to
a Glorot uniform initializer.
output: The output style for this network. Can be either 'logits' or
'predictions'.
"""
...
...
official/nlp/modeling/networks/token_classification.py
View file @
bdaa525b
...
...
@@ -34,8 +34,8 @@ class TokenClassification(tf.keras.Model):
input_width: The innermost dimension of the input tensor to this network.
num_classes: The number of classes that this network should classify to.
activation: The activation, if any, for the dense layer in this network.
initializer: The intializer for the dense layer in this network. Defaults
to
a Glorot uniform initializer.
initializer: The in
i
tializer for the dense layer in this network. Defaults
to
a Glorot uniform initializer.
output: The output style for this network. Can be either 'logits' or
'predictions'.
"""
...
...
official/nlp/xlnet/xlnet_modeling.py
View file @
bdaa525b
...
...
@@ -55,7 +55,7 @@ def rel_shift(x, klen=-1):
def
_get_initializer
(
flags
):
"""Get variable intializer."""
"""Get variable in
i
tializer."""
if
flags
.
init_method
==
'uniform'
:
initializer
=
tf
.
keras
.
initializers
.
RandomUniform
(
minval
=-
flags
.
init_range
,
maxval
=
flags
.
init_range
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment