inputs.py 23.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

import tensorflow as tf
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
from object_detection.core import preprocessor
29
30
31
32
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
from object_detection.protos import input_reader_pb2
33
from object_detection.protos import model_pb2
34
from object_detection.protos import train_pb2
35
from object_detection.utils import config_util
36
from object_detection.utils import ops as util_ops
37
from object_detection.utils import shape_utils
38

39
40
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
41
42
SERVING_FED_EXAMPLE_KEY = 'serialized_example'

43
44
45
46
47
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
}

48

49
50
51
52
53
54
55
56
57
58
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
                         retain_original_image=False):
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
59
60
61
62
63
64
  1. If key fields.InputDataFields.image_additional_channels is present in
     tensor_dict, the additional channels will be merged into
     fields.InputDataFields.image.
  2. data_augmentation_fn (optional): applied on tensor_dict.
  3. model_preprocess_fn: applied only on image tensor in tensor_dict.
  4. image_resizer_fn: applied on original image and instance mask tensor in
65
     tensor_dict.
66
67
  5. one_hot_encoding: applied to classes tensor in tensor_dict.
  6. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
68
69
70
71
72
73
74
75
76
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
77
78
79
80
    image_resizer_fn: image resizer function to apply on groundtruth instance
      `masks. This function must take a 3-D float tensor of an image and a 3-D
      tensor of instance masks and return a resized version of these along with
      the true shapes.
81
82
83
84
85
86
87
88
89
90
91
92
93
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
  """
94
95
96
  if fields.InputDataFields.groundtruth_boxes in tensor_dict:
    tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates(
        tensor_dict)
97
98
99
100
101
  if fields.InputDataFields.image_additional_channels in tensor_dict:
    channels = tensor_dict[fields.InputDataFields.image_additional_channels]
    tensor_dict[fields.InputDataFields.image] = tf.concat(
        [tensor_dict[fields.InputDataFields.image], channels], axis=2)

102
  if retain_original_image:
103
    tensor_dict[fields.InputDataFields.original_image] = tf.cast(
104
        tensor_dict[fields.InputDataFields.image], tf.uint8)
105
106
107
108
109
110

  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
    tensor_dict = data_augmentation_fn(tensor_dict)

  # Apply model preprocessing ops and resize instance masks.
111
112
113
  image = tensor_dict[fields.InputDataFields.image]
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(
      tf.expand_dims(tf.to_float(image), axis=0))
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      preprocessed_resized_image, axis=0)
  tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
      true_image_shape, axis=0)
  if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
    masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
    _, resized_masks, _ = image_resizer_fn(image, masks)
    tensor_dict[fields.InputDataFields.
                groundtruth_instance_masks] = resized_masks

  # Transform groundtruth classes to one hot encodings.
  label_offset = 1
  zero_indexed_groundtruth_classes = tensor_dict[
      fields.InputDataFields.groundtruth_classes] - label_offset
  tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
      zero_indexed_groundtruth_classes, num_classes)

  if merge_multiple_boxes:
    merged_boxes, merged_classes, _ = util_ops.merge_boxes_with_multiple_labels(
        tensor_dict[fields.InputDataFields.groundtruth_boxes],
        zero_indexed_groundtruth_classes, num_classes)
135
    merged_classes = tf.cast(merged_classes, tf.float32)
136
137
138
139
140
141
    tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes

  return tensor_dict


142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def pad_input_data_to_static_shapes(tensor_dict, max_num_boxes, num_classes,
                                    spatial_image_shape=None):
  """Pads input tensors to static shapes.

  Args:
    tensor_dict: Tensor dictionary of input data
    max_num_boxes: Max number of groundtruth boxes needed to compute shapes for
      padding.
    num_classes: Number of classes in the dataset needed to compute shapes for
      padding.
    spatial_image_shape: A list of two integers of the form [height, width]
      containing expected spatial shape of the image.

  Returns:
    A dictionary keyed by fields.InputDataFields containing padding shapes for
    tensors in the dataset.

  Raises:
    ValueError: If groundtruth classes is neither rank 1 nor rank 2.
  """

  if not spatial_image_shape or spatial_image_shape == [-1, -1]:
    height, width = None, None
  else:
    height, width = spatial_image_shape  # pylint: disable=unpacking-non-sequence

  num_additional_channels = 0
  if fields.InputDataFields.image_additional_channels in tensor_dict:
    num_additional_channels = tensor_dict[
        fields.InputDataFields.image_additional_channels].shape[2].value
  padding_shapes = {
      # Additional channels are merged before batching.
      fields.InputDataFields.image: [
          height, width, 3 + num_additional_channels
      ],
      fields.InputDataFields.image_additional_channels: [
          height, width, num_additional_channels
      ],
      fields.InputDataFields.source_id: [],
      fields.InputDataFields.filename: [],
      fields.InputDataFields.key: [],
      fields.InputDataFields.groundtruth_difficult: [max_num_boxes],
      fields.InputDataFields.groundtruth_boxes: [max_num_boxes, 4],
      fields.InputDataFields.groundtruth_classes: [max_num_boxes, num_classes],
      fields.InputDataFields.groundtruth_instance_masks: [
          max_num_boxes, height, width
      ],
      fields.InputDataFields.groundtruth_is_crowd: [max_num_boxes],
      fields.InputDataFields.groundtruth_group_of: [max_num_boxes],
      fields.InputDataFields.groundtruth_area: [max_num_boxes],
      fields.InputDataFields.groundtruth_weights: [max_num_boxes],
      fields.InputDataFields.num_groundtruth_boxes: [],
      fields.InputDataFields.groundtruth_label_types: [max_num_boxes],
      fields.InputDataFields.groundtruth_label_scores: [max_num_boxes],
      fields.InputDataFields.true_image_shape: [3],
      fields.InputDataFields.multiclass_scores: [
          max_num_boxes, num_classes + 1 if num_classes is not None else None
      ],
      fields.InputDataFields.groundtruth_image_classes: [num_classes],
  }

  if fields.InputDataFields.original_image in tensor_dict:
    padding_shapes[fields.InputDataFields.original_image] = [
        None, None, 3 + num_additional_channels
    ]
  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    tensor_shape = (
        tensor_dict[fields.InputDataFields.groundtruth_keypoints].shape)
    padding_shape = [max_num_boxes, tensor_shape[1].value,
                     tensor_shape[2].value]
    padding_shapes[fields.InputDataFields.groundtruth_keypoints] = padding_shape
  if fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict:
    tensor_shape = tensor_dict[fields.InputDataFields.
                               groundtruth_keypoint_visibilities].shape
    padding_shape = [max_num_boxes, tensor_shape[1].value]
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_visibilities] = padding_shape

  padded_tensor_dict = {}
  for tensor_name in tensor_dict:
222
223
    padded_tensor_dict[tensor_name] = shape_utils.pad_or_clip_nd(
        tensor_dict[tensor_name], padding_shapes[tensor_name])
224
225
226
227
228
229
230
231

  # Make sure that the number of groundtruth boxes now reflects the
  # padded/clipped tensors.
  if fields.InputDataFields.num_groundtruth_boxes in padded_tensor_dict:
    padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = (
        tf.minimum(
            padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
            max_num_boxes))
232
233
234
  return padded_tensor_dict


235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
      tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
          include_instance_masks=include_instance_masks,
          include_keypoints=include_keypoints))
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def _get_labels_dict(input_dict):
  """Extracts labels dict from input dict."""
  required_label_keys = [
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.groundtruth_boxes,
      fields.InputDataFields.groundtruth_classes,
      fields.InputDataFields.groundtruth_weights
  ]
  labels_dict = {}
  for key in required_label_keys:
    labels_dict[key] = input_dict[key]

  optional_label_keys = [
      fields.InputDataFields.groundtruth_keypoints,
      fields.InputDataFields.groundtruth_instance_masks,
      fields.InputDataFields.groundtruth_area,
      fields.InputDataFields.groundtruth_is_crowd,
      fields.InputDataFields.groundtruth_difficult
  ]

  for key in optional_label_keys:
    if key in input_dict:
      labels_dict[key] = input_dict[key]
  if fields.InputDataFields.groundtruth_difficult in labels_dict:
    labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
        labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
  return labels_dict


def _get_features_dict(input_dict):
  """Extracts features dict from input dict."""
  hash_from_source_id = tf.string_to_hash_bucket_fast(
      input_dict[fields.InputDataFields.source_id], HASH_BINS)
  features = {
      fields.InputDataFields.image:
          input_dict[fields.InputDataFields.image],
      HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
      fields.InputDataFields.true_image_shape:
          input_dict[fields.InputDataFields.true_image_shape]
  }
  if fields.InputDataFields.original_image in input_dict:
    features[fields.InputDataFields.original_image] = input_dict[
        fields.InputDataFields.original_image]
  return features


311
312
def create_train_input_fn(train_config, train_input_config,
                          model_config):
313
314
315
316
317
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
318
    model_config: A model_pb2.DetectionModel.
319
320
321
322
323

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

324
  def _train_input_fn(params=None):
325
326
    """Returns `features` and `labels` tensor dictionaries for training.

327
328
329
    Args:
      params: Parameter dictionary passed from the estimator.

330
    Returns:
331
332
      A tf.data.Dataset that holds (features, labels) tuple.

333
      features: Dictionary of feature tensors.
334
335
336
337
338
339
340
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
341
        features[fields.InputDataFields.original_image] (optional) is a
342
          [batch_size, H, W, C] float32 tensor with original images.
343
      labels: Dictionary of groundtruth tensors.
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
          int32 tensor indicating the number of groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_boxes] is a
          [batch_size, num_boxes, 4] float32 tensor containing the corners of
          the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [batch_size, num_boxes, num_classes] float32 one-hot tensor of
          classes.
        labels[fields.InputDataFields.groundtruth_weights] is a
          [batch_size, num_boxes] float32 tensor containing groundtruth weights
          for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [batch_size, num_boxes, H, W] float32 tensor containing only binary
          values, which represent instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
          keypoints for each box.
362
363

    Raises:
364
365
      TypeError: if the `train_config`, `train_input_config` or `model_config`
        are not of the correct type.
366
367
368
369
370
371
372
    """
    if not isinstance(train_config, train_pb2.TrainConfig):
      raise TypeError('For training mode, the `train_config` must be a '
                      'train_pb2.TrainConfig.')
    if not isinstance(train_input_config, input_reader_pb2.InputReader):
      raise TypeError('The `train_input_config` must be a '
                      'input_reader_pb2.InputReader.')
373
374
375
    if not isinstance(model_config, model_pb2.DetectionModel):
      raise TypeError('The `model_config` must be a '
                      'model_pb2.DetectionModel.')
376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    def transform_and_pad_input_data_fn(tensor_dict):
      """Combines transform and pad operation."""
      data_augmentation_options = [
          preprocessor_builder.build(step)
          for step in train_config.data_augmentation_options
      ]
      data_augmentation_fn = functools.partial(
          augment_input_data,
          data_augmentation_options=data_augmentation_options)
      model = model_builder.build(model_config, is_training=True)
      image_resizer_config = config_util.get_image_resizer_config(model_config)
      image_resizer_fn = image_resizer_builder.build(image_resizer_config)
      transform_data_fn = functools.partial(
          transform_input_data, model_preprocess_fn=model.preprocess,
          image_resizer_fn=image_resizer_fn,
          num_classes=config_util.get_number_of_classes(model_config),
          data_augmentation_fn=data_augmentation_fn,
          merge_multiple_boxes=train_config.merge_multiple_label_boxes,
          retain_original_image=train_config.retain_original_images)

      tensor_dict = pad_input_data_to_static_shapes(
          tensor_dict=transform_data_fn(tensor_dict),
          max_num_boxes=train_input_config.max_number_of_boxes,
          num_classes=config_util.get_number_of_classes(model_config),
          spatial_image_shape=config_util.get_spatial_image_size(
              image_resizer_config))
      return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))
404

405
    dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
406
        train_input_config,
407
408
409
        transform_input_data_fn=transform_and_pad_input_data_fn,
        batch_size=params['batch_size'] if params else train_config.batch_size)
    return dataset
410
411
412
413

  return _train_input_fn


414
def create_eval_input_fn(eval_config, eval_input_config, model_config):
415
416
  """Creates an eval `input` function for `Estimator`.

417
418
  # TODO(ronnyvotel,rathodv): Allow batch sizes of more than 1 for eval.

419
420
421
  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
422
    model_config: A model_pb2.DetectionModel.
423
424
425
426
427

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

428
  def _eval_input_fn(params=None):
429
430
    """Returns `features` and `labels` tensor dictionaries for evaluation.

431
432
433
    Args:
      params: Parameter dictionary passed from the estimator.

434
    Returns:
435
436
      A tf.data.Dataset that holds (features, labels) tuple.

437
      features: Dictionary of feature tensors.
438
439
440
441
442
443
444
445
446
        features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
          with preprocessed images.
        features[HASH_KEY] is a [1] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [1, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] is a [1, H', W', C]
          float32 tensor with the original image.
447
      labels: Dictionary of groundtruth tensors.
448
449
450
451
452
453
454
455
456
457
458
459
460
461
        labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
          float32 tensor containing the corners of the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [num_boxes, num_classes] float32 one-hot tensor of classes.
        labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
          float32 tensor containing object areas.
        labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
          bool tensor indicating if the boxes enclose a crowd.
        labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
          int32 tensor indicating if the boxes represent difficult instances.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [1, num_boxes, H, W] float32 tensor containing only binary values,
          which represent instance masks for objects.
462
463

    Raises:
464
465
      TypeError: if the `eval_config`, `eval_input_config` or `model_config`
        are not of the correct type.
466
    """
467
    params = params or {}
468
469
    if not isinstance(eval_config, eval_pb2.EvalConfig):
      raise TypeError('For eval mode, the `eval_config` must be a '
470
                      'train_pb2.EvalConfig.')
471
472
473
    if not isinstance(eval_input_config, input_reader_pb2.InputReader):
      raise TypeError('The `eval_input_config` must be a '
                      'input_reader_pb2.InputReader.')
474
475
476
477
    if not isinstance(model_config, model_pb2.DetectionModel):
      raise TypeError('The `model_config` must be a '
                      'model_pb2.DetectionModel.')

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    def transform_and_pad_input_data_fn(tensor_dict):
      """Combines transform and pad operation."""
      num_classes = config_util.get_number_of_classes(model_config)
      model = model_builder.build(model_config, is_training=False)
      image_resizer_config = config_util.get_image_resizer_config(model_config)
      image_resizer_fn = image_resizer_builder.build(image_resizer_config)

      transform_data_fn = functools.partial(
          transform_input_data, model_preprocess_fn=model.preprocess,
          image_resizer_fn=image_resizer_fn,
          num_classes=num_classes,
          data_augmentation_fn=None,
          retain_original_image=eval_config.retain_original_images)
      tensor_dict = pad_input_data_to_static_shapes(
          tensor_dict=transform_data_fn(tensor_dict),
          max_num_boxes=eval_input_config.max_number_of_boxes,
          num_classes=config_util.get_number_of_classes(model_config),
          spatial_image_shape=config_util.get_spatial_image_size(
              image_resizer_config))
      return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))
498
499
    dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
        eval_input_config,
500
501
502
        batch_size=1,  # Currently only support batch size of 1 for eval.
        transform_input_data_fn=transform_and_pad_input_data_fn)
    return dataset
503
504
505
506

  return _eval_input_fn


507
def create_predict_input_fn(model_config, predict_input_config):
508
509
  """Creates a predict `input` function for `Estimator`.

510
511
  Args:
    model_config: A model_pb2.DetectionModel.
512
    predict_input_config: An input_reader_pb2.InputReader.
513

514
515
516
517
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

518
  def _predict_input_fn(params=None):
519
520
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

521
522
523
    Args:
      params: Parameter dictionary passed from the estimator.

524
525
526
    Returns:
      `ServingInputReceiver`.
    """
527
    del params
528
    example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
529

530
531
532
533
    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
534

535
536
537
538
539
540
    transform_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

541
542
543
    decoder = tf_example_decoder.TfExampleDecoder(
        load_instance_masks=False,
        num_additional_channels=predict_input_config.num_additional_channels)
544
    input_dict = transform_fn(decoder.decode(example))
545
546
    images = tf.to_float(input_dict[fields.InputDataFields.image])
    images = tf.expand_dims(images, axis=0)
547
548
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
549
550

    return tf.estimator.export.ServingInputReceiver(
551
552
553
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
554
555
556
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn