transformer.py 18.4 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Hongkun Yu's avatar
Hongkun Yu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

Hongkun Yu's avatar
Hongkun Yu committed
15
"""Keras-based transformer block layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17

Chen Chen's avatar
Chen Chen committed
18
import gin
Hongkun Yu's avatar
Hongkun Yu committed
19
20
import tensorflow as tf

Scott Zhu's avatar
Scott Zhu committed
21
from official.modeling import tf_utils
Hongkun Yu's avatar
Hongkun Yu committed
22
from official.nlp.modeling.layers import attention
23
from official.nlp.modeling.layers import multi_channel_attention
24
from official.nlp.modeling.layers import transformer_encoder_block
25
from official.nlp.modeling.layers.util import tf_function_if_eager
Hongkun Yu's avatar
Hongkun Yu committed
26
27
28


@tf.keras.utils.register_keras_serializable(package="Text")
29
class Transformer(transformer_encoder_block.TransformerEncoderBlock):
Hongkun Yu's avatar
Hongkun Yu committed
30
31
32
33
34
  """Transformer layer.

  This layer implements the Transformer from "Attention Is All You Need".
  (https://arxiv.org/abs/1706.03762).

35
  Args:
Hongkun Yu's avatar
Hongkun Yu committed
36
37
38
39
40
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
41
42
    output_range: the sequence output range, [0, output_range) by slicing the
      target sequence. `None` means the target sequence is not sliced.
Hongkun Yu's avatar
Hongkun Yu committed
43
44
45
46
47
48
49
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
50
51
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
52
    norm_first: Whether to normalize inputs to attention and intermediate dense
53
54
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
55
    norm_epsilon: Epsilon value to initialize normalization layers.
56
    intermediate_dropout: Dropout probability for intermediate_dropout_layer.
xinliupitt's avatar
xinliupitt committed
57
58
    attention_initializer: Initializer for kernels of attention layers. If set
      `None`, attention layers use kernel_initializer as initializer for kernel.
Hongkun Yu's avatar
Hongkun Yu committed
59
60
61
62
63
64
65
66
  """

  def __init__(self,
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
67
               output_range=None,
Hongkun Yu's avatar
Hongkun Yu committed
68
69
70
71
72
73
74
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
75
76
77
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
78
               intermediate_dropout=0.0,
xinliupitt's avatar
xinliupitt committed
79
               attention_initializer=None,
Hongkun Yu's avatar
Hongkun Yu committed
80
               **kwargs):
81
    super().__init__(
Zhenyu Tan's avatar
Zhenyu Tan committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        num_attention_heads=num_attention_heads,
        inner_dim=intermediate_size,
        inner_activation=intermediate_activation,
        output_dropout=dropout_rate,
        attention_dropout=attention_dropout_rate,
        output_range=output_range,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        use_bias=use_bias,
        norm_first=norm_first,
        norm_epsilon=norm_epsilon,
        inner_dropout=intermediate_dropout,
        attention_initializer=attention_initializer,
        **kwargs)
101

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
102
103
104
105
106
107
108
109
110
  def get_config(self):
    return {
        "num_attention_heads":
            self._num_heads,
        "intermediate_size":
            self._inner_dim,
        "intermediate_activation":
            self._inner_activation,
        "dropout_rate":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
111
            self._output_dropout_rate,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        "attention_dropout_rate":
            self._attention_dropout_rate,
        "output_range":
            self._output_range,
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
            self._norm_epsilon,
        "intermediate_dropout":
            self._inner_dropout,
        "attention_initializer":
            tf.keras.initializers.serialize(self._attention_initializer)
    }

142

Chen Chen's avatar
Chen Chen committed
143
144
@tf.keras.utils.register_keras_serializable(package="Text")
@gin.configurable
145
146
147
148
class CompiledTransformer(Transformer):

  @tf_function_if_eager(experimental_compile=True)
  def call(self, inputs):
149
    return super().call(inputs)
150
151
152


@tf.keras.utils.register_keras_serializable(package="Text")
Hongkun Yu's avatar
Hongkun Yu committed
153
class TransformerDecoderBlock(tf.keras.layers.Layer):
154
155
156
157
158
159
  """Single transformer layer for decoder.

  It has three sub-layers:
  (1) a multi-head self-attention mechanism.
  (2) a encoder-decoder attention.
  (3) a positionwise fully connected feed-forward network.
Hongkun Yu's avatar
Hongkun Yu committed
160

161
  Args:
Hongkun Yu's avatar
Hongkun Yu committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
    multi_channel_cross_attention: Whether to use `MultiChannelAttention` for
      cross-attention between target sequences and source sequences.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
176
177
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
178
    norm_first: Whether to normalize inputs to attention and intermediate dense
179
180
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
181
    norm_epsilon: Epsilon value to initialize normalization layers.
182
    intermediate_dropout: Dropout probability for intermediate_dropout_layer.
xinliupitt's avatar
xinliupitt committed
183
184
    attention_initializer: Initializer for kernels of attention layers. If set
      `None`, attention layers use kernel_initializer as initializer for kernel.
185
186
187
  """

  def __init__(self,
Hongkun Yu's avatar
Hongkun Yu committed
188
189
190
191
192
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
193
               multi_channel_cross_attention=False,
Hongkun Yu's avatar
Hongkun Yu committed
194
195
196
197
198
199
200
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
201
202
203
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
204
               intermediate_dropout=0.0,
xinliupitt's avatar
xinliupitt committed
205
               attention_initializer=None,
206
               **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
207
    super().__init__(**kwargs)
208
209
210
211
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
    self.intermediate_activation = tf.keras.activations.get(
        intermediate_activation)
Hongkun Yu's avatar
Hongkun Yu committed
212
213
    self.dropout_rate = dropout_rate
    self.attention_dropout_rate = attention_dropout_rate
214
    self.multi_channel_cross_attention = multi_channel_cross_attention
Hongkun Yu's avatar
Hongkun Yu committed
215
216
217
218
219
220
221
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
222
223
224
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
xinliupitt's avatar
xinliupitt committed
225
    self._intermediate_dropout = intermediate_dropout
xinliupitt's avatar
xinliupitt committed
226
    if attention_initializer:
xinliupitt's avatar
xinliupitt committed
227
228
      self._attention_initializer = tf.keras.initializers.get(
          attention_initializer)
xinliupitt's avatar
xinliupitt committed
229
    else:
Scott Zhu's avatar
Scott Zhu committed
230
231
      self._attention_initializer = tf_utils.clone_initializer(
          self._kernel_initializer)
232
233
234
235
236
    if self.multi_channel_cross_attention:
      self._cross_attention_cls = multi_channel_attention.MultiChannelAttention
    else:
      self._cross_attention_cls = attention.MultiHeadAttention

Hongkun Yu's avatar
Hongkun Yu committed
237
238
  def build(self, input_shape):
    target_tensor_shape = tf.TensorShape(input_shape[0])
239
    if len(target_tensor_shape.as_list()) != 3:
Hongkun Yu's avatar
Hongkun Yu committed
240
241
242
243
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    hidden_size = target_tensor_shape[2]
    if hidden_size % self.num_attention_heads != 0:
244
245
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
Hongkun Yu's avatar
Hongkun Yu committed
246
          "heads (%d)" % (hidden_size, self.num_attention_heads))
247
    self.attention_head_size = int(hidden_size) // self.num_attention_heads
248
    common_kwargs = dict(
Hongkun Yu's avatar
Hongkun Yu committed
249
250
251
252
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
253
254
255
256
        bias_constraint=self._bias_constraint)
    # Self attention.
    self.self_attention = attention.CachedAttention(
        num_heads=self.num_attention_heads,
257
        key_dim=self.attention_head_size,
258
        dropout=self.attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
259
        use_bias=self._use_bias,
Scott Zhu's avatar
Scott Zhu committed
260
261
262
        kernel_initializer=tf_utils.clone_initializer(
            self._attention_initializer),
        bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
263
264
265
266
267
268
        name="self_attention",
        **common_kwargs)
    self.self_attention_output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
Scott Zhu's avatar
Scott Zhu committed
269
270
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
271
272
        name="output",
        **common_kwargs)
273
    self.self_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
274
        rate=self.dropout_rate)
275
276
    self.self_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
277
            name="self_attention_layer_norm",
278
            axis=-1,
279
280
            epsilon=self._norm_epsilon,
            dtype="float32"))
281
282
283
    # Encoder-decoder attention.
    self.encdec_attention = self._cross_attention_cls(
        num_heads=self.num_attention_heads,
284
        key_dim=self.attention_head_size,
Hongkun Yu's avatar
Hongkun Yu committed
285
286
        dropout=self.attention_dropout_rate,
        output_shape=hidden_size,
xinliupitt's avatar
xinliupitt committed
287
        use_bias=self._use_bias,
Scott Zhu's avatar
Scott Zhu committed
288
289
290
        kernel_initializer=tf_utils.clone_initializer(
            self._attention_initializer),
        bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
291
292
        name="attention/encdec",
        **common_kwargs)
293
294

    self.encdec_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
295
        rate=self.dropout_rate)
296
297
    self.encdec_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
298
            name="attention/encdec_output_layer_norm",
299
            axis=-1,
300
301
            epsilon=self._norm_epsilon,
            dtype="float32"))
302
303

    # Feed-forward projection.
304
305
306
307
    self.intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self.intermediate_size),
        bias_axes="d",
Scott Zhu's avatar
Scott Zhu committed
308
309
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
310
311
        name="intermediate",
        **common_kwargs)
312
313
    self.intermediate_activation_layer = tf.keras.layers.Activation(
        self.intermediate_activation)
314
315
    self._intermediate_dropout_layer = tf.keras.layers.Dropout(
        rate=self._intermediate_dropout)
316
317
318
319
    self.output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
Scott Zhu's avatar
Scott Zhu committed
320
321
        kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
        bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
322
323
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
324
    self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
325
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
326
327
328
329
        name="output_layer_norm",
        axis=-1,
        epsilon=self._norm_epsilon,
        dtype="float32")
Hongkun Yu's avatar
Hongkun Yu committed
330
    super().build(input_shape)
331

xinliupitt's avatar
xinliupitt committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
  def get_config(self):
    config = {
        "num_attention_heads":
            self.num_attention_heads,
        "intermediate_size":
            self.intermediate_size,
        "intermediate_activation":
            self.intermediate_activation,
        "dropout_rate":
            self.dropout_rate,
        "attention_dropout_rate":
            self.attention_dropout_rate,
        "multi_channel_cross_attention":
            self.multi_channel_cross_attention,
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
xinliupitt's avatar
xinliupitt committed
365
366
            self._norm_epsilon,
        "intermediate_dropout":
xinliupitt's avatar
xinliupitt committed
367
368
            self._intermediate_dropout,
        "attention_initializer":
xinliupitt's avatar
xinliupitt committed
369
            tf.keras.initializers.serialize(self._attention_initializer)
xinliupitt's avatar
xinliupitt committed
370
    }
Hongkun Yu's avatar
Hongkun Yu committed
371
    base_config = super().get_config()
xinliupitt's avatar
xinliupitt committed
372
373
    return dict(list(base_config.items()) + list(config.items()))

374
375
376
377
378
379
380
  def common_layers_with_encoder(self):
    """Gets layer objects that can make a Transformer encoder block."""
    return [
        self.self_attention, self.self_attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_layer_norm
    ]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
381
382
383
  def call(self, inputs, cache=None, decode_loop_step=None):
    if self.multi_channel_cross_attention:
      if len(inputs) != 5:
384
        raise ValueError(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
385
            "TransformerDecoderBlock must have 5 inputs, when it uses "
386
            "multi_channel_cross_attention. But it got: %d" % len(inputs))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
387
388
389
390
391
    elif len(inputs) != 4:
      raise ValueError(
          "TransformerDecoderBlock must have 4 inputs, but it got: %d" %
          len(inputs))
    input_tensor, memory, attention_mask, self_attention_mask = inputs[:4]
xinliupitt's avatar
xinliupitt committed
392
393
394
    source_tensor = input_tensor
    if self._norm_first:
      input_tensor = self.self_attention_layer_norm(input_tensor)
395
    self_attention_output, cache = self.self_attention(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
396
        query=input_tensor,
397
        value=input_tensor,
398
399
400
401
        attention_mask=self_attention_mask,
        cache=cache,
        decode_loop_step=decode_loop_step)
    self_attention_output = self.self_attention_dropout(self_attention_output)
xinliupitt's avatar
xinliupitt committed
402
403
404
405
406
407
408
409
410
    if self._norm_first:
      self_attention_output = source_tensor + self_attention_output
    else:
      self_attention_output = self.self_attention_layer_norm(
          input_tensor + self_attention_output)
    if self._norm_first:
      source_self_attention_output = self_attention_output
      self_attention_output = self.encdec_attention_layer_norm(
          self_attention_output)
411
    cross_attn_inputs = dict(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
412
        query=self_attention_output,
413
414
        value=memory,
        attention_mask=attention_mask)
415
416
    if self.multi_channel_cross_attention:
      # Accesses the 5-th input tensor for the doc-attention probabilities.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
417
      cross_attn_inputs["context_attention_weights"] = inputs[-1]
418
    attention_output = self.encdec_attention(**cross_attn_inputs)
419
    attention_output = self.encdec_attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
420
421
422
423
    if self._norm_first:
      attention_output = source_self_attention_output + attention_output
    else:
      attention_output = self.encdec_attention_layer_norm(
424
          self_attention_output + attention_output)
xinliupitt's avatar
xinliupitt committed
425
426
427
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self.output_layer_norm(attention_output)
428
429
430
431

    intermediate_output = self.intermediate_dense(attention_output)
    intermediate_output = self.intermediate_activation_layer(
        intermediate_output)
432
    intermediate_output = self._intermediate_dropout_layer(intermediate_output)
433
434
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
xinliupitt's avatar
xinliupitt committed
435
436
437
438
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self.output_layer_norm(layer_output + attention_output)
439
    return layer_output, cache