eval_util.py 50.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Common utility functions for evaluation."""
pkulzc's avatar
pkulzc committed
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

20
import collections
21
import os
22
import re
23
24
25
import time

import numpy as np
pkulzc's avatar
pkulzc committed
26
from six.moves import range
27
28
29
import tensorflow.compat.v1 as tf

import tf_slim as slim
30

31
32
33
34
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import keypoint_ops
from object_detection.core import standard_fields as fields
35
from object_detection.metrics import coco_evaluation
36
from object_detection.protos import eval_pb2
37
from object_detection.utils import label_map_util
38
from object_detection.utils import object_detection_evaluation
39
from object_detection.utils import ops
40
from object_detection.utils import shape_utils
41
42
from object_detection.utils import visualization_utils as vis_utils

43
EVAL_KEYPOINT_METRIC = 'coco_keypoint_metrics'
44

45
46
47
48
49
50
# A dictionary of metric names to classes that implement the metric. The classes
# in the dictionary must implement
# utils.object_detection_evaluation.DetectionEvaluator interface.
EVAL_METRICS_CLASS_DICT = {
    'coco_detection_metrics':
        coco_evaluation.CocoDetectionEvaluator,
51
52
    'coco_keypoint_metrics':
        coco_evaluation.CocoKeypointEvaluator,
53
54
    'coco_mask_metrics':
        coco_evaluation.CocoMaskEvaluator,
55
56
    'coco_panoptic_metrics':
        coco_evaluation.CocoPanopticSegmentationEvaluator,
57
58
    'oid_challenge_detection_metrics':
        object_detection_evaluation.OpenImagesDetectionChallengeEvaluator,
59
60
61
    'oid_challenge_segmentation_metrics':
        object_detection_evaluation
        .OpenImagesInstanceSegmentationChallengeEvaluator,
62
63
64
65
    'pascal_voc_detection_metrics':
        object_detection_evaluation.PascalDetectionEvaluator,
    'weighted_pascal_voc_detection_metrics':
        object_detection_evaluation.WeightedPascalDetectionEvaluator,
66
67
    'precision_at_recall_detection_metrics':
        object_detection_evaluation.PrecisionAtRecallDetectionEvaluator,
68
69
70
71
72
73
    'pascal_voc_instance_segmentation_metrics':
        object_detection_evaluation.PascalInstanceSegmentationEvaluator,
    'weighted_pascal_voc_instance_segmentation_metrics':
        object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator,
    'oid_V2_detection_metrics':
        object_detection_evaluation.OpenImagesDetectionEvaluator,
74
75
76
77
}

EVAL_DEFAULT_METRIC = 'coco_detection_metrics'

78
79
80
81
82
83
84
85
86

def write_metrics(metrics, global_step, summary_dir):
  """Write metrics to a summary directory.

  Args:
    metrics: A dictionary containing metric names and values.
    global_step: Global step at which the metrics are computed.
    summary_dir: Directory to write tensorflow summaries to.
  """
87
  tf.logging.info('Writing metrics to tf summary.')
88
  summary_writer = tf.summary.FileWriterCache.get(summary_dir)
89
90
91
92
93
  for key in sorted(metrics):
    summary = tf.Summary(value=[
        tf.Summary.Value(tag=key, simple_value=metrics[key]),
    ])
    summary_writer.add_summary(summary, global_step)
94
95
    tf.logging.info('%s: %f', key, metrics[key])
  tf.logging.info('Metrics written to tf summary.')
96
97


98
# TODO(rathodv): Add tests.
99
100
101
102
103
104
105
106
def visualize_detection_results(result_dict,
                                tag,
                                global_step,
                                categories,
                                summary_dir='',
                                export_dir='',
                                agnostic_mode=False,
                                show_groundtruth=False,
107
                                groundtruth_box_visualization_color='black',
108
                                min_score_thresh=.5,
109
110
111
112
                                max_num_predictions=20,
                                skip_scores=False,
                                skip_labels=False,
                                keep_image_id_for_visualization_export=False):
113
114
115
116
117
118
119
120
121
122
123
124
  """Visualizes detection results and writes visualizations to image summaries.

  This function visualizes an image with its detected bounding boxes and writes
  to image summaries which can be viewed on tensorboard.  It optionally also
  writes images to a directory. In the case of missing entry in the label map,
  unknown class name in the visualization is shown as "N/A".

  Args:
    result_dict: a dictionary holding groundtruth and detection
      data corresponding to each image being evaluated.  The following keys
      are required:
        'original_image': a numpy array representing the image with shape
125
          [1, height, width, 3] or [1, height, width, 1]
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        'detection_boxes': a numpy array of shape [N, 4]
        'detection_scores': a numpy array of shape [N]
        'detection_classes': a numpy array of shape [N]
      The following keys are optional:
        'groundtruth_boxes': a numpy array of shape [N, 4]
        'groundtruth_keypoints': a numpy array of shape [N, num_keypoints, 2]
      Detections are assumed to be provided in decreasing order of score and for
      display, and we assume that scores are probabilities between 0 and 1.
    tag: tensorboard tag (string) to associate with image.
    global_step: global step at which the visualization are generated.
    categories: a list of dictionaries representing all possible categories.
      Each dict in this list has the following keys:
          'id': (required) an integer id uniquely identifying this category
          'name': (required) string representing category name
            e.g., 'cat', 'dog', 'pizza'
          'supercategory': (optional) string representing the supercategory
            e.g., 'animal', 'vehicle', 'food', etc
    summary_dir: the output directory to which the image summaries are written.
    export_dir: the output directory to which images are written.  If this is
      empty (default), then images are not exported.
    agnostic_mode: boolean (default: False) controlling whether to evaluate in
      class-agnostic mode or not.
    show_groundtruth: boolean (default: False) controlling whether to show
      groundtruth boxes in addition to detected boxes
150
151
    groundtruth_box_visualization_color: box color for visualizing groundtruth
      boxes
152
153
    min_score_thresh: minimum score threshold for a box to be visualized
    max_num_predictions: maximum number of detections to visualize
154
155
156
157
    skip_scores: whether to skip score when drawing a single detection
    skip_labels: whether to skip label when drawing a single detection
    keep_image_id_for_visualization_export: whether to keep image identifier in
      filename when exported to export_dir
158
159
160
161
162
  Raises:
    ValueError: if result_dict does not contain the expected keys (i.e.,
      'original_image', 'detection_boxes', 'detection_scores',
      'detection_classes')
  """
163
164
  detection_fields = fields.DetectionResultFields
  input_fields = fields.InputDataFields
165
  if not set([
166
167
168
169
      input_fields.original_image,
      detection_fields.detection_boxes,
      detection_fields.detection_scores,
      detection_fields.detection_classes,
170
171
  ]).issubset(set(result_dict.keys())):
    raise ValueError('result_dict does not contain all expected keys.')
172
  if show_groundtruth and input_fields.groundtruth_boxes not in result_dict:
173
174
    raise ValueError('If show_groundtruth is enabled, result_dict must contain '
                     'groundtruth_boxes.')
175
  tf.logging.info('Creating detection visualizations.')
176
177
  category_index = label_map_util.create_category_index(categories)

178
  image = np.squeeze(result_dict[input_fields.original_image], axis=0)
179
180
  if image.shape[2] == 1:  # If one channel image, repeat in RGB.
    image = np.tile(image, [1, 1, 3])
181
182
183
184
185
186
187
  detection_boxes = result_dict[detection_fields.detection_boxes]
  detection_scores = result_dict[detection_fields.detection_scores]
  detection_classes = np.int32((result_dict[
      detection_fields.detection_classes]))
  detection_keypoints = result_dict.get(detection_fields.detection_keypoints)
  detection_masks = result_dict.get(detection_fields.detection_masks)
  detection_boundaries = result_dict.get(detection_fields.detection_boundaries)
188
189
190

  # Plot groundtruth underneath detections
  if show_groundtruth:
191
192
    groundtruth_boxes = result_dict[input_fields.groundtruth_boxes]
    groundtruth_keypoints = result_dict.get(input_fields.groundtruth_keypoints)
193
    vis_utils.visualize_boxes_and_labels_on_image_array(
194
195
196
197
198
        image=image,
        boxes=groundtruth_boxes,
        classes=None,
        scores=None,
        category_index=category_index,
199
200
        keypoints=groundtruth_keypoints,
        use_normalized_coordinates=False,
201
202
        max_boxes_to_draw=None,
        groundtruth_box_visualization_color=groundtruth_box_visualization_color)
203
204
205
206
207
208
209
  vis_utils.visualize_boxes_and_labels_on_image_array(
      image,
      detection_boxes,
      detection_classes,
      detection_scores,
      category_index,
      instance_masks=detection_masks,
210
      instance_boundaries=detection_boundaries,
211
212
213
214
      keypoints=detection_keypoints,
      use_normalized_coordinates=False,
      max_boxes_to_draw=max_num_predictions,
      min_score_thresh=min_score_thresh,
215
216
217
      agnostic_mode=agnostic_mode,
      skip_scores=skip_scores,
      skip_labels=skip_labels)
218
219

  if export_dir:
220
221
222
223
224
225
226
    if keep_image_id_for_visualization_export and result_dict[fields.
                                                              InputDataFields()
                                                              .key]:
      export_path = os.path.join(export_dir, 'export-{}-{}.png'.format(
          tag, result_dict[fields.InputDataFields().key]))
    else:
      export_path = os.path.join(export_dir, 'export-{}.png'.format(tag))
227
228
229
    vis_utils.save_image_array_as_png(image, export_path)

  summary = tf.Summary(value=[
230
231
232
233
234
      tf.Summary.Value(
          tag=tag,
          image=tf.Summary.Image(
              encoded_image_string=vis_utils.encode_image_array_as_png_str(
                  image)))
235
  ])
236
  summary_writer = tf.summary.FileWriterCache.get(summary_dir)
237
238
  summary_writer.add_summary(summary, global_step)

239
240
  tf.logging.info('Detection visualizations written to summary with tag %s.',
                  tag)
241
242


243
244
245
246
247
248
249
250
251
def _run_checkpoint_once(tensor_dict,
                         evaluators=None,
                         batch_processor=None,
                         checkpoint_dirs=None,
                         variables_to_restore=None,
                         restore_fn=None,
                         num_batches=1,
                         master='',
                         save_graph=False,
252
                         save_graph_dir='',
253
                         losses_dict=None,
254
255
                         eval_export_path=None,
                         process_metrics_fn=None):
256
  """Evaluates metrics defined in evaluators and returns summaries.
257
258
259
260

  This function loads the latest checkpoint in checkpoint_dirs and evaluates
  all metrics defined in evaluators. The metrics are processed in batch by the
  batch_processor.
261
262
263
264

  Args:
    tensor_dict: a dictionary holding tensors representing a batch of detections
      and corresponding groundtruth annotations.
265
266
267
    evaluators: a list of object of type DetectionEvaluator to be used for
      evaluation. Note that the metric names produced by different evaluators
      must be unique.
268
269
270
271
272
273
274
275
276
277
278
    batch_processor: a function taking four arguments:
      1. tensor_dict: the same tensor_dict that is passed in as the first
        argument to this function.
      2. sess: a tensorflow session
      3. batch_index: an integer representing the index of the batch amongst
        all batches
      By default, batch_processor is None, which defaults to running:
        return sess.run(tensor_dict)
      To skip an image, it suffices to return an empty dictionary in place of
      result_dict.
    checkpoint_dirs: list of directories to load into an EnsembleModel. If it
279
280
      has only one directory, EnsembleModel will not be used --
        a DetectionModel
281
282
283
284
285
286
287
288
289
290
291
292
293
      will be instantiated directly. Not used if restore_fn is set.
    variables_to_restore: None, or a dictionary mapping variable names found in
      a checkpoint to model variables. The dictionary would normally be
      generated by creating a tf.train.ExponentialMovingAverage object and
      calling its variables_to_restore() method. Not used if restore_fn is set.
    restore_fn: None, or a function that takes a tf.Session object and correctly
      restores all necessary variables from the correct checkpoint file. If
      None, attempts to restore from the first directory in checkpoint_dirs.
    num_batches: the number of batches to use for evaluation.
    master: the location of the Tensorflow session.
    save_graph: whether or not the Tensorflow graph is stored as a pbtxt file.
    save_graph_dir: where to store the Tensorflow graph on disk. If save_graph
      is True this must be non-empty.
294
    losses_dict: optional dictionary of scalar detection losses.
295
296
    eval_export_path: Path for saving a json file that contains the detection
      results in json format.
297
298
299
300
301
302
    process_metrics_fn: a callback called with evaluation results after each
      evaluation is done.  It could be used e.g. to back up checkpoints with
      best evaluation scores, or to call an external system to update evaluation
      results in order to drive best hyper-parameter search.  Parameters are:
      int checkpoint_number, Dict[str, ObjectDetectionEvalMetrics] metrics,
      str checkpoint_file path.
303
304
305
306

  Returns:
    global_step: the count of global steps.
    all_evaluator_metrics: A dictionary containing metric names and values.
307
308
309
310
311
312
313
314
315
316
317

  Raises:
    ValueError: if restore_fn is None and checkpoint_dirs doesn't have at least
      one element.
    ValueError: if save_graph is True and save_graph_dir is not defined.
  """
  if save_graph and not save_graph_dir:
    raise ValueError('`save_graph_dir` must be defined.')
  sess = tf.Session(master, graph=tf.get_default_graph())
  sess.run(tf.global_variables_initializer())
  sess.run(tf.local_variables_initializer())
318
  sess.run(tf.tables_initializer())
319
  checkpoint_file = None
320
321
322
323
324
325
326
327
328
329
330
331
332
  if restore_fn:
    restore_fn(sess)
  else:
    if not checkpoint_dirs:
      raise ValueError('`checkpoint_dirs` must have at least one entry.')
    checkpoint_file = tf.train.latest_checkpoint(checkpoint_dirs[0])
    saver = tf.train.Saver(variables_to_restore)
    saver.restore(sess, checkpoint_file)

  if save_graph:
    tf.train.write_graph(sess.graph_def, save_graph_dir, 'eval.pbtxt')

  counters = {'skipped': 0, 'success': 0}
333
  aggregate_result_losses_dict = collections.defaultdict(list)
334
  with slim.queues.QueueRunners(sess):
335
336
337
    try:
      for batch in range(int(num_batches)):
        if (batch + 1) % 100 == 0:
338
339
          tf.logging.info('Running eval ops batch %d/%d', batch + 1,
                          num_batches)
340
341
        if not batch_processor:
          try:
342
343
344
345
            if not losses_dict:
              losses_dict = {}
            result_dict, result_losses_dict = sess.run([tensor_dict,
                                                        losses_dict])
346
347
            counters['success'] += 1
          except tf.errors.InvalidArgumentError:
348
            tf.logging.info('Skipping image')
349
350
351
            counters['skipped'] += 1
            result_dict = {}
        else:
352
353
          result_dict, result_losses_dict = batch_processor(
              tensor_dict, sess, batch, counters, losses_dict=losses_dict)
354
355
        if not result_dict:
          continue
356
357
        for key, value in iter(result_losses_dict.items()):
          aggregate_result_losses_dict[key].append(value)
358
        for evaluator in evaluators:
359
          # TODO(b/65130867): Use image_id tensor once we fix the input data
360
          # decoders to return correct image_id.
361
          # TODO(akuznetsa): result_dict contains batches of images, while
362
          # add_single_ground_truth_image_info expects a single image. Fix
363
          if (isinstance(result_dict, dict) and
364
              fields.InputDataFields.key in result_dict and
365
366
367
368
              result_dict[fields.InputDataFields.key]):
            image_id = result_dict[fields.InputDataFields.key]
          else:
            image_id = batch
369
          evaluator.add_single_ground_truth_image_info(
370
              image_id=image_id, groundtruth_dict=result_dict)
371
          evaluator.add_single_detected_image_info(
372
373
              image_id=image_id, detections_dict=result_dict)
      tf.logging.info('Running eval batches done.')
374
    except tf.errors.OutOfRangeError:
375
      tf.logging.info('Done evaluating -- epoch limit reached')
376
377
    finally:
      # When done, ask the threads to stop.
378
379
      tf.logging.info('# success: %d', counters['success'])
      tf.logging.info('# skipped: %d', counters['skipped'])
380
      all_evaluator_metrics = {}
381
382
383
384
385
386
387
388
      if eval_export_path and eval_export_path is not None:
        for evaluator in evaluators:
          if (isinstance(evaluator, coco_evaluation.CocoDetectionEvaluator) or
              isinstance(evaluator, coco_evaluation.CocoMaskEvaluator)):
            tf.logging.info('Started dumping to json file.')
            evaluator.dump_detections_to_json_file(
                json_output_path=eval_export_path)
            tf.logging.info('Finished dumping to json file.')
389
390
391
392
393
394
395
      for evaluator in evaluators:
        metrics = evaluator.evaluate()
        evaluator.clear()
        if any(key in all_evaluator_metrics for key in metrics):
          raise ValueError('Metric names between evaluators must not collide.')
        all_evaluator_metrics.update(metrics)
      global_step = tf.train.global_step(sess, tf.train.get_global_step())
396
397
398

      for key, value in iter(aggregate_result_losses_dict.items()):
        all_evaluator_metrics['Losses/' + key] = np.mean(value)
399
400
401
402
403
404
405
406
407
      if process_metrics_fn and checkpoint_file:
        m = re.search(r'model.ckpt-(\d+)$', checkpoint_file)
        if not m:
          tf.logging.error('Failed to parse checkpoint number from: %s',
                           checkpoint_file)
        else:
          checkpoint_number = int(m.group(1))
          process_metrics_fn(checkpoint_number, all_evaluator_metrics,
                             checkpoint_file)
408
  sess.close()
409
  return (global_step, all_evaluator_metrics)
410
411


412
# TODO(rathodv): Add tests.
413
414
def repeated_checkpoint_run(tensor_dict,
                            summary_dir,
415
                            evaluators,
416
417
418
419
420
421
422
                            batch_processor=None,
                            checkpoint_dirs=None,
                            variables_to_restore=None,
                            restore_fn=None,
                            num_batches=1,
                            eval_interval_secs=120,
                            max_number_of_evaluations=None,
423
                            max_evaluation_global_step=None,
424
425
                            master='',
                            save_graph=False,
426
                            save_graph_dir='',
427
                            losses_dict=None,
428
429
                            eval_export_path=None,
                            process_metrics_fn=None):
430
431
432
433
434
435
436
437
438
439
440
  """Periodically evaluates desired tensors using checkpoint_dirs or restore_fn.

  This function repeatedly loads a checkpoint and evaluates a desired
  set of tensors (provided by tensor_dict) and hands the resulting numpy
  arrays to a function result_processor which can be used to further
  process/save/visualize the results.

  Args:
    tensor_dict: a dictionary holding tensors representing a batch of detections
      and corresponding groundtruth annotations.
    summary_dir: a directory to write metrics summaries.
441
442
443
    evaluators: a list of object of type DetectionEvaluator to be used for
      evaluation. Note that the metric names produced by different evaluators
      must be unique.
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    batch_processor: a function taking three arguments:
      1. tensor_dict: the same tensor_dict that is passed in as the first
        argument to this function.
      2. sess: a tensorflow session
      3. batch_index: an integer representing the index of the batch amongst
        all batches
      By default, batch_processor is None, which defaults to running:
        return sess.run(tensor_dict)
    checkpoint_dirs: list of directories to load into a DetectionModel or an
      EnsembleModel if restore_fn isn't set. Also used to determine when to run
      next evaluation. Must have at least one element.
    variables_to_restore: None, or a dictionary mapping variable names found in
      a checkpoint to model variables. The dictionary would normally be
      generated by creating a tf.train.ExponentialMovingAverage object and
      calling its variables_to_restore() method. Not used if restore_fn is set.
    restore_fn: a function that takes a tf.Session object and correctly restores
      all necessary variables from the correct checkpoint file.
    num_batches: the number of batches to use for evaluation.
    eval_interval_secs: the number of seconds between each evaluation run.
    max_number_of_evaluations: the max number of iterations of the evaluation.
      If the value is left as None the evaluation continues indefinitely.
465
    max_evaluation_global_step: global step when evaluation stops.
466
467
468
469
    master: the location of the Tensorflow session.
    save_graph: whether or not the Tensorflow graph is saved as a pbtxt file.
    save_graph_dir: where to save on disk the Tensorflow graph. If store_graph
      is True this must be non-empty.
470
    losses_dict: optional dictionary of scalar detection losses.
471
472
    eval_export_path: Path for saving a json file that contains the detection
      results in json format.
473
474
475
476
477
478
    process_metrics_fn: a callback called with evaluation results after each
      evaluation is done.  It could be used e.g. to back up checkpoints with
      best evaluation scores, or to call an external system to update evaluation
      results in order to drive best hyper-parameter search.  Parameters are:
      int checkpoint_number, Dict[str, ObjectDetectionEvalMetrics] metrics,
      str checkpoint_file path.
479
480
481
482

  Returns:
    metrics: A dictionary containing metric names and values in the latest
      evaluation.
483
484
485
486
487
488
489

  Raises:
    ValueError: if max_num_of_evaluations is not None or a positive number.
    ValueError: if checkpoint_dirs doesn't have at least one element.
  """
  if max_number_of_evaluations and max_number_of_evaluations <= 0:
    raise ValueError(
490
491
492
493
        '`max_number_of_evaluations` must be either None or a positive number.')
  if max_evaluation_global_step and max_evaluation_global_step <= 0:
    raise ValueError(
        '`max_evaluation_global_step` must be either None or positive.')
494
495
496
497
498
499
500
501

  if not checkpoint_dirs:
    raise ValueError('`checkpoint_dirs` must have at least one entry.')

  last_evaluated_model_path = None
  number_of_evaluations = 0
  while True:
    start = time.time()
502
    tf.logging.info('Starting evaluation at ' + time.strftime(
503
        '%Y-%m-%d-%H:%M:%S', time.gmtime()))
504
505
    model_path = tf.train.latest_checkpoint(checkpoint_dirs[0])
    if not model_path:
506
507
      tf.logging.info('No model found in %s. Will try again in %d seconds',
                      checkpoint_dirs[0], eval_interval_secs)
508
    elif model_path == last_evaluated_model_path:
509
510
      tf.logging.info('Found already evaluated checkpoint. Will try again in '
                      '%d seconds', eval_interval_secs)
511
512
    else:
      last_evaluated_model_path = model_path
513
514
515
516
517
518
519
520
521
522
523
524
      global_step, metrics = _run_checkpoint_once(
          tensor_dict,
          evaluators,
          batch_processor,
          checkpoint_dirs,
          variables_to_restore,
          restore_fn,
          num_batches,
          master,
          save_graph,
          save_graph_dir,
          losses_dict=losses_dict,
525
526
          eval_export_path=eval_export_path,
          process_metrics_fn=process_metrics_fn)
527
      write_metrics(metrics, global_step, summary_dir)
528
529
530
531
      if (max_evaluation_global_step and
          global_step >= max_evaluation_global_step):
        tf.logging.info('Finished evaluation!')
        break
532
533
534
535
    number_of_evaluations += 1

    if (max_number_of_evaluations and
        number_of_evaluations >= max_number_of_evaluations):
536
      tf.logging.info('Finished evaluation!')
537
538
539
540
      break
    time_to_next_eval = start + eval_interval_secs - time.time()
    if time_to_next_eval > 0:
      time.sleep(time_to_next_eval)
541
542
543
544

  return metrics


545
546
547
548
549
550
551
552
553
554
def _scale_box_to_absolute(args):
  boxes, image_shape = args
  return box_list_ops.to_absolute_coordinates(
      box_list.BoxList(boxes), image_shape[0], image_shape[1]).get()


def _resize_detection_masks(args):
  detection_boxes, detection_masks, image_shape = args
  detection_masks_reframed = ops.reframe_box_masks_to_image_masks(
      detection_masks, detection_boxes, image_shape[0], image_shape[1])
555
556
557
558
559
  # If the masks are currently float, binarize them. Otherwise keep them as
  # integers, since they have already been thresholded.
  if detection_masks_reframed.dtype == tf.float32:
    detection_masks_reframed = tf.greater(detection_masks_reframed, 0.5)
  return tf.cast(detection_masks_reframed, tf.uint8)
560
561


562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
def resize_detection_masks(detection_boxes, detection_masks,
                           original_image_spatial_shapes):
  """Resizes per-box detection masks to be relative to the entire image.

  Note that this function only works when the spatial size of all images in
  the batch is the same. If not, this function should be used with batch_size=1.

  Args:
    detection_boxes: A [batch_size, num_instances, 4] float tensor containing
      bounding boxes.
    detection_masks: A [batch_suze, num_instances, height, width] float tensor
      containing binary instance masks per box.
    original_image_spatial_shapes: a [batch_size, 3] shaped int tensor
      holding the spatial dimensions of each image in the batch.
  Returns:
    masks: Masks resized to the spatial extents given by
      (original_image_spatial_shapes[0, 0], original_image_spatial_shapes[0, 1])
  """
  return shape_utils.static_or_dynamic_map_fn(
      _resize_detection_masks,
      elems=[detection_boxes, detection_masks, original_image_spatial_shapes],
      dtype=tf.uint8)


586
def _resize_groundtruth_masks(args):
587
588
589
590
591
  """Resizes groundgtruth masks to the original image size."""
  mask, true_image_shape, original_image_shape = args
  true_height = true_image_shape[0]
  true_width = true_image_shape[1]
  mask = mask[:, :true_height, :true_width]
592
593
594
  mask = tf.expand_dims(mask, 3)
  mask = tf.image.resize_images(
      mask,
595
      original_image_shape,
596
597
598
599
600
      method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
      align_corners=True)
  return tf.cast(tf.squeeze(mask, 3), tf.uint8)


601
602
603
604
605
606
607
608
609
610
611
def _resize_surface_coordinate_masks(args):
  detection_boxes, surface_coords, image_shape = args
  surface_coords_v, surface_coords_u = tf.unstack(surface_coords, axis=-1)
  surface_coords_v_reframed = ops.reframe_box_masks_to_image_masks(
      surface_coords_v, detection_boxes, image_shape[0], image_shape[1])
  surface_coords_u_reframed = ops.reframe_box_masks_to_image_masks(
      surface_coords_u, detection_boxes, image_shape[0], image_shape[1])
  return tf.stack([surface_coords_v_reframed, surface_coords_u_reframed],
                  axis=-1)


612
613
614
615
616
def _scale_keypoint_to_absolute(args):
  keypoints, image_shape = args
  return keypoint_ops.scale(keypoints, image_shape[0], image_shape[1])


617
618
619
620
621
622
623
624
625
626
627
628
629
def result_dict_for_single_example(image,
                                   key,
                                   detections,
                                   groundtruth=None,
                                   class_agnostic=False,
                                   scale_to_absolute=False):
  """Merges all detection and groundtruth information for a single example.

  Note that evaluation tools require classes that are 1-indexed, and so this
  function performs the offset. If `class_agnostic` is True, all output classes
  have label 1.

  Args:
630
    image: A single 4D uint8 image tensor of shape [1, H, W, C].
631
632
633
634
635
636
637
638
639
640
641
642
643
    key: A single string tensor identifying the image.
    detections: A dictionary of detections, returned from
      DetectionModel.postprocess().
    groundtruth: (Optional) Dictionary of groundtruth items, with fields:
      'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
        normalized coordinates.
      'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional)
      'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional)
      'groundtruth_difficult': [num_boxes] int64 tensor. (Optional)
      'groundtruth_group_of': [num_boxes] int64 tensor. (Optional)
      'groundtruth_instance_masks': 3D int64 tensor of instance masks
        (Optional).
644
645
      'groundtruth_keypoints': [num_boxes, num_keypoints, 2] float32 tensor with
        keypoints (Optional).
646
647
    class_agnostic: Boolean indicating whether the detections are class-agnostic
      (i.e. binary). Default False.
648
649
650
    scale_to_absolute: Boolean indicating whether boxes and keypoints should be
      scaled to absolute coordinates. Note that for IoU based evaluations, it
      does not matter whether boxes are expressed in absolute or relative
651
652
653
654
655
656
657
658
659
660
661
      coordinates. Default False.

  Returns:
    A dictionary with:
    'original_image': A [1, H, W, C] uint8 image tensor.
    'key': A string tensor with image identifier.
    'detection_boxes': [max_detections, 4] float32 tensor of boxes, in
      normalized or absolute coordinates, depending on the value of
      `scale_to_absolute`.
    'detection_scores': [max_detections] float32 tensor of scores.
    'detection_classes': [max_detections] int64 tensor of 1-indexed classes.
662
663
    'detection_masks': [max_detections, H, W] float32 tensor of binarized
      masks, reframed to full image masks.
664
665
666
667
668
669
670
671
672
673
674
    'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
      normalized or absolute coordinates, depending on the value of
      `scale_to_absolute`. (Optional)
    'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      (Optional)
    'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional)
    'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional)
    'groundtruth_difficult': [num_boxes] int64 tensor. (Optional)
    'groundtruth_group_of': [num_boxes] int64 tensor. (Optional)
    'groundtruth_instance_masks': 3D int64 tensor of instance masks
      (Optional).
675
676
    'groundtruth_keypoints': [num_boxes, num_keypoints, 2] float32 tensor with
      keypoints (Optional).
677
  """
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

  if groundtruth:
    max_gt_boxes = tf.shape(
        groundtruth[fields.InputDataFields.groundtruth_boxes])[0]
    for gt_key in groundtruth:
      # expand groundtruth dict along the batch dimension.
      groundtruth[gt_key] = tf.expand_dims(groundtruth[gt_key], 0)

  for detection_key in detections:
    detections[detection_key] = tf.expand_dims(
        detections[detection_key][0], axis=0)

  batched_output_dict = result_dict_for_batched_example(
      image,
      tf.expand_dims(key, 0),
      detections,
      groundtruth,
      class_agnostic,
      scale_to_absolute,
      max_gt_boxes=max_gt_boxes)

  exclude_keys = [
      fields.InputDataFields.original_image,
      fields.DetectionResultFields.num_detections,
702
      fields.InputDataFields.num_groundtruth_boxes
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
  ]

  output_dict = {
      fields.InputDataFields.original_image:
          batched_output_dict[fields.InputDataFields.original_image]
  }

  for key in batched_output_dict:
    # remove the batch dimension.
    if key not in exclude_keys:
      output_dict[key] = tf.squeeze(batched_output_dict[key], 0)
  return output_dict


def result_dict_for_batched_example(images,
                                    keys,
                                    detections,
                                    groundtruth=None,
                                    class_agnostic=False,
                                    scale_to_absolute=False,
                                    original_image_spatial_shapes=None,
724
                                    true_image_shapes=None,
725
726
727
728
729
730
                                    max_gt_boxes=None):
  """Merges all detection and groundtruth information for a single example.

  Note that evaluation tools require classes that are 1-indexed, and so this
  function performs the offset. If `class_agnostic` is True, all output classes
  have label 1.
731
732
733
734
  The groundtruth coordinates of boxes/keypoints in 'groundtruth' dictionary are
  normalized relative to the (potentially padded) input image, while the
  coordinates in 'detection' dictionary are normalized relative to the true
  image shape.
735
736
737

  Args:
    images: A single 4D uint8 image tensor of shape [batch_size, H, W, C].
738
    keys: A [batch_size] string/int tensor with image identifier.
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    detections: A dictionary of detections, returned from
      DetectionModel.postprocess().
    groundtruth: (Optional) Dictionary of groundtruth items, with fields:
      'groundtruth_boxes': [batch_size, max_number_of_boxes, 4] float32 tensor
        of boxes, in normalized coordinates.
      'groundtruth_classes':  [batch_size, max_number_of_boxes] int64 tensor of
        1-indexed classes.
      'groundtruth_area': [batch_size, max_number_of_boxes] float32 tensor of
        bbox area. (Optional)
      'groundtruth_is_crowd':[batch_size, max_number_of_boxes] int64
        tensor. (Optional)
      'groundtruth_difficult': [batch_size, max_number_of_boxes] int64
        tensor. (Optional)
      'groundtruth_group_of': [batch_size, max_number_of_boxes] int64
        tensor. (Optional)
      'groundtruth_instance_masks': 4D int64 tensor of instance
        masks (Optional).
756
757
758
759
      'groundtruth_keypoints': [batch_size, max_number_of_boxes, num_keypoints,
        2] float32 tensor with keypoints (Optional).
      'groundtruth_keypoint_visibilities': [batch_size, max_number_of_boxes,
        num_keypoints] bool tensor with keypoint visibilities (Optional).
760
761
      'groundtruth_labeled_classes': [batch_size, num_classes] int64
        tensor of 1-indexed classes. (Optional)
762
763
764
765
766
767
      'groundtruth_dp_num_points': [batch_size, max_number_of_boxes] int32
        tensor. (Optional)
      'groundtruth_dp_part_ids': [batch_size, max_number_of_boxes,
        max_sampled_points] int32 tensor. (Optional)
      'groundtruth_dp_surface_coords_list': [batch_size, max_number_of_boxes,
        max_sampled_points, 4] float32 tensor. (Optional)
768
769
770
771
772
773
774
775
    class_agnostic: Boolean indicating whether the detections are class-agnostic
      (i.e. binary). Default False.
    scale_to_absolute: Boolean indicating whether boxes and keypoints should be
      scaled to absolute coordinates. Note that for IoU based evaluations, it
      does not matter whether boxes are expressed in absolute or relative
      coordinates. Default False.
    original_image_spatial_shapes: A 2D int32 tensor of shape [batch_size, 2]
      used to resize the image. When set to None, the image size is retained.
776
777
    true_image_shapes: A 2D int32 tensor of shape [batch_size, 3]
      containing the size of the unpadded original_image.
778
779
780
781
782
783
784
785
    max_gt_boxes: [batch_size] tensor representing the maximum number of
      groundtruth boxes to pad.

  Returns:
    A dictionary with:
    'original_image': A [batch_size, H, W, C] uint8 image tensor.
    'original_image_spatial_shape': A [batch_size, 2] tensor containing the
      original image sizes.
786
787
    'true_image_shape': A [batch_size, 3] tensor containing the size of
      the unpadded original_image.
788
789
790
791
792
793
794
    'key': A [batch_size] string tensor with image identifier.
    'detection_boxes': [batch_size, max_detections, 4] float32 tensor of boxes,
      in normalized or absolute coordinates, depending on the value of
      `scale_to_absolute`.
    'detection_scores': [batch_size, max_detections] float32 tensor of scores.
    'detection_classes': [batch_size, max_detections] int64 tensor of 1-indexed
      classes.
795
796
797
    'detection_masks': [batch_size, max_detections, H, W] uint8 tensor of
      instance masks, reframed to full image masks. Note that these may be
      binarized (e.g. {0, 1}), or may contain 1-indexed part labels. (Optional)
798
799
800
801
    'detection_keypoints': [batch_size, max_detections, num_keypoints, 2]
      float32 tensor containing keypoint coordinates. (Optional)
    'detection_keypoint_scores': [batch_size, max_detections, num_keypoints]
      float32 tensor containing keypoint scores. (Optional)
802
803
804
    'detection_surface_coords': [batch_size, max_detection, H, W, 2] float32
      tensor with normalized surface coordinates (e.g. DensePose UV
      coordinates). (Optional)
805
806
807
808
809
810
811
812
813
814
815
816
817
818
    'num_detections': [batch_size] int64 tensor containing number of valid
      detections.
    'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in
      normalized or absolute coordinates, depending on the value of
      `scale_to_absolute`. (Optional)
    'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
      classes. (Optional)
    'groundtruth_area': [batch_size, num_boxes] float32 tensor of bbox
      area. (Optional)
    'groundtruth_is_crowd': [batch_size, num_boxes] int64 tensor. (Optional)
    'groundtruth_difficult': [batch_size, num_boxes] int64 tensor. (Optional)
    'groundtruth_group_of': [batch_size, num_boxes] int64 tensor. (Optional)
    'groundtruth_instance_masks': 4D int64 tensor of instance masks
      (Optional).
819
820
821
822
    'groundtruth_keypoints': [batch_size, num_boxes, num_keypoints, 2] float32
      tensor with keypoints (Optional).
    'groundtruth_keypoint_visibilities': [batch_size, num_boxes, num_keypoints]
      bool tensor with keypoint visibilities (Optional).
823
824
    'groundtruth_labeled_classes': [batch_size, num_classes]  int64 tensor
      of 1-indexed classes. (Optional)
825
826
827
828
    'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
      of groundtruth boxes per image.

  Raises:
829
830
831
832
    ValueError: if original_image_spatial_shape is not 2D int32 tensor of shape
      [2].
    ValueError: if true_image_shapes is not 2D int32 tensor of shape
      [3].
833
  """
834
835
  label_id_offset = 1  # Applying label id offset (b/63711816)

836
  input_data_fields = fields.InputDataFields
837
838
839
840
841
842
843
844
845
846
847
  if original_image_spatial_shapes is None:
    original_image_spatial_shapes = tf.tile(
        tf.expand_dims(tf.shape(images)[1:3], axis=0),
        multiples=[tf.shape(images)[0], 1])
  else:
    if (len(original_image_spatial_shapes.shape) != 2 and
        original_image_spatial_shapes.shape[1] != 2):
      raise ValueError(
          '`original_image_spatial_shape` should be a 2D tensor of shape '
          '[batch_size, 2].')

848
849
850
851
852
853
854
855
856
857
  if true_image_shapes is None:
    true_image_shapes = tf.tile(
        tf.expand_dims(tf.shape(images)[1:4], axis=0),
        multiples=[tf.shape(images)[0], 1])
  else:
    if (len(true_image_shapes.shape) != 2
        and true_image_shapes.shape[1] != 3):
      raise ValueError('`true_image_shapes` should be a 2D tensor of '
                       'shape [batch_size, 3].')

858
  output_dict = {
859
860
861
862
      input_data_fields.original_image:
          images,
      input_data_fields.key:
          keys,
863
      input_data_fields.original_image_spatial_shape: (
864
865
866
          original_image_spatial_shapes),
      input_data_fields.true_image_shape:
          true_image_shapes
867
868
869
  }

  detection_fields = fields.DetectionResultFields
870
871
  detection_boxes = detections[detection_fields.detection_boxes]
  detection_scores = detections[detection_fields.detection_scores]
872
873
  num_detections = tf.cast(detections[detection_fields.num_detections],
                           dtype=tf.int32)
874
875
876
877
878

  if class_agnostic:
    detection_classes = tf.ones_like(detection_scores, dtype=tf.int64)
  else:
    detection_classes = (
879
        tf.to_int64(detections[detection_fields.detection_classes]) +
880
        label_id_offset)
881

882
883
  if scale_to_absolute:
    output_dict[detection_fields.detection_boxes] = (
884
885
886
887
        shape_utils.static_or_dynamic_map_fn(
            _scale_box_to_absolute,
            elems=[detection_boxes, original_image_spatial_shapes],
            dtype=tf.float32))
888
889
  else:
    output_dict[detection_fields.detection_boxes] = detection_boxes
890
  output_dict[detection_fields.detection_classes] = detection_classes
891
  output_dict[detection_fields.detection_scores] = detection_scores
892
  output_dict[detection_fields.num_detections] = num_detections
893
894

  if detection_fields.detection_masks in detections:
895
    detection_masks = detections[detection_fields.detection_masks]
896
897
898
    output_dict[detection_fields.detection_masks] = resize_detection_masks(
        detection_boxes, detection_masks, original_image_spatial_shapes)

899
900
901
902
903
904
905
906
907
    if detection_fields.detection_surface_coords in detections:
      detection_surface_coords = detections[
          detection_fields.detection_surface_coords]
      output_dict[detection_fields.detection_surface_coords] = (
          shape_utils.static_or_dynamic_map_fn(
              _resize_surface_coordinate_masks,
              elems=[detection_boxes, detection_surface_coords,
                     original_image_spatial_shapes],
              dtype=tf.float32))
908

909
  if detection_fields.detection_keypoints in detections:
910
    detection_keypoints = detections[detection_fields.detection_keypoints]
911
912
913
    output_dict[detection_fields.detection_keypoints] = detection_keypoints
    if scale_to_absolute:
      output_dict[detection_fields.detection_keypoints] = (
914
915
916
917
          shape_utils.static_or_dynamic_map_fn(
              _scale_keypoint_to_absolute,
              elems=[detection_keypoints, original_image_spatial_shapes],
              dtype=tf.float32))
918
919
920
921
922
923
    if detection_fields.detection_keypoint_scores in detections:
      output_dict[detection_fields.detection_keypoint_scores] = detections[
          detection_fields.detection_keypoint_scores]
    else:
      output_dict[detection_fields.detection_keypoint_scores] = tf.ones_like(
          detections[detection_fields.detection_keypoints][:, :, :, 0])
924
925

  if groundtruth:
926
927
928
929
930
931
932
    if max_gt_boxes is None:
      if input_data_fields.num_groundtruth_boxes in groundtruth:
        max_gt_boxes = groundtruth[input_data_fields.num_groundtruth_boxes]
      else:
        raise ValueError(
            'max_gt_boxes must be provided when processing batched examples.')

933
    if input_data_fields.groundtruth_instance_masks in groundtruth:
934
      masks = groundtruth[input_data_fields.groundtruth_instance_masks]
935
936
937
      groundtruth[input_data_fields.groundtruth_instance_masks] = (
          shape_utils.static_or_dynamic_map_fn(
              _resize_groundtruth_masks,
938
              elems=[masks, true_image_shapes, original_image_spatial_shapes],
939
940
              dtype=tf.uint8))

941
    output_dict.update(groundtruth)
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961

    image_shape = tf.cast(tf.shape(images), tf.float32)
    image_height, image_width = image_shape[1], image_shape[2]

    def _scale_box_to_normalized_true_image(args):
      """Scale the box coordinates to be relative to the true image shape."""
      boxes, true_image_shape = args
      true_image_shape = tf.cast(true_image_shape, tf.float32)
      true_height, true_width = true_image_shape[0], true_image_shape[1]
      normalized_window = tf.stack([0.0, 0.0, true_height / image_height,
                                    true_width / image_width])
      return box_list_ops.change_coordinate_frame(
          box_list.BoxList(boxes), normalized_window).get()

    groundtruth_boxes = groundtruth[input_data_fields.groundtruth_boxes]
    groundtruth_boxes = shape_utils.static_or_dynamic_map_fn(
        _scale_box_to_normalized_true_image,
        elems=[groundtruth_boxes, true_image_shapes], dtype=tf.float32)
    output_dict[input_data_fields.groundtruth_boxes] = groundtruth_boxes

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
    if input_data_fields.groundtruth_keypoints in groundtruth:
      # If groundtruth_keypoints is in the groundtruth dictionary. Update the
      # coordinates to conform with the true image shape.
      def _scale_keypoints_to_normalized_true_image(args):
        """Scale the box coordinates to be relative to the true image shape."""
        keypoints, true_image_shape = args
        true_image_shape = tf.cast(true_image_shape, tf.float32)
        true_height, true_width = true_image_shape[0], true_image_shape[1]
        normalized_window = tf.stack(
            [0.0, 0.0, true_height / image_height, true_width / image_width])
        return keypoint_ops.change_coordinate_frame(keypoints,
                                                    normalized_window)

      groundtruth_keypoints = groundtruth[
          input_data_fields.groundtruth_keypoints]
      groundtruth_keypoints = shape_utils.static_or_dynamic_map_fn(
          _scale_keypoints_to_normalized_true_image,
          elems=[groundtruth_keypoints, true_image_shapes],
          dtype=tf.float32)
      output_dict[
          input_data_fields.groundtruth_keypoints] = groundtruth_keypoints

984
    if scale_to_absolute:
985
      groundtruth_boxes = output_dict[input_data_fields.groundtruth_boxes]
986
      output_dict[input_data_fields.groundtruth_boxes] = (
987
988
989
990
          shape_utils.static_or_dynamic_map_fn(
              _scale_box_to_absolute,
              elems=[groundtruth_boxes, original_image_spatial_shapes],
              dtype=tf.float32))
991
992
993
994
995
996
997
998
      if input_data_fields.groundtruth_keypoints in groundtruth:
        groundtruth_keypoints = output_dict[
            input_data_fields.groundtruth_keypoints]
        output_dict[input_data_fields.groundtruth_keypoints] = (
            shape_utils.static_or_dynamic_map_fn(
                _scale_keypoint_to_absolute,
                elems=[groundtruth_keypoints, original_image_spatial_shapes],
                dtype=tf.float32))
999

1000
1001
1002
1003
1004
1005
    # For class-agnostic models, groundtruth classes all become 1.
    if class_agnostic:
      groundtruth_classes = groundtruth[input_data_fields.groundtruth_classes]
      groundtruth_classes = tf.ones_like(groundtruth_classes, dtype=tf.int64)
      output_dict[input_data_fields.groundtruth_classes] = groundtruth_classes

1006
1007
    output_dict[input_data_fields.num_groundtruth_boxes] = max_gt_boxes

1008
  return output_dict
1009
1010


1011
1012
1013
1014
1015
1016
1017
1018
def get_evaluators(eval_config, categories, evaluator_options=None):
  """Returns the evaluator class according to eval_config, valid for categories.

  Args:
    eval_config: An `eval_pb2.EvalConfig`.
    categories: A list of dicts, each of which has the following keys -
        'id': (required) an integer id uniquely identifying this category.
        'name': (required) string representing category name e.g., 'cat', 'dog'.
1019
1020
        'keypoints': (optional) dict mapping this category's keypoints to unique
          ids.
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
    evaluator_options: A dictionary of metric names (see
      EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization
      keyword arguments. For example:
      evalator_options = {
        'coco_detection_metrics': {'include_metrics_per_category': True}
      }

  Returns:
    An list of instances of DetectionEvaluator.

  Raises:
    ValueError: if metric is not in the metric class dictionary.
  """
  evaluator_options = evaluator_options or {}
  eval_metric_fn_keys = eval_config.metrics_set
  if not eval_metric_fn_keys:
    eval_metric_fn_keys = [EVAL_DEFAULT_METRIC]
  evaluators_list = []
  for eval_metric_fn_key in eval_metric_fn_keys:
    if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT:
      raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))
    kwargs_dict = (evaluator_options[eval_metric_fn_key] if eval_metric_fn_key
                   in evaluator_options else {})
    evaluators_list.append(EVAL_METRICS_CLASS_DICT[eval_metric_fn_key](
        categories,
        **kwargs_dict))
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

  if isinstance(eval_config, eval_pb2.EvalConfig):
    parameterized_metrics = eval_config.parameterized_metric
    for parameterized_metric in parameterized_metrics:
      assert parameterized_metric.HasField('parameterized_metric')
      if parameterized_metric.WhichOneof(
          'parameterized_metric') == EVAL_KEYPOINT_METRIC:
        keypoint_metrics = parameterized_metric.coco_keypoint_metrics
        # Create category to keypoints mapping dict.
        category_keypoints = {}
        class_label = keypoint_metrics.class_label
        category = None
        for cat in categories:
          if cat['name'] == class_label:
            category = cat
            break
        if not category:
          continue
        keypoints_for_this_class = category['keypoints']
        category_keypoints = [{
            'id': keypoints_for_this_class[kp_name], 'name': kp_name
        } for kp_name in keypoints_for_this_class]
        # Create keypoint evaluator for this category.
        evaluators_list.append(EVAL_METRICS_CLASS_DICT[EVAL_KEYPOINT_METRIC](
            category['id'], category_keypoints, class_label,
            keypoint_metrics.keypoint_label_to_sigmas))
1073
1074
1075
1076
  return evaluators_list


def get_eval_metric_ops_for_evaluators(eval_config,
1077
                                       categories,
1078
1079
                                       eval_dict):
  """Returns eval metrics ops to use with `tf.estimator.EstimatorSpec`.
1080
1081

  Args:
1082
    eval_config: An `eval_pb2.EvalConfig`.
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
    categories: A list of dicts, each of which has the following keys -
        'id': (required) an integer id uniquely identifying this category.
        'name': (required) string representing category name e.g., 'cat', 'dog'.
    eval_dict: An evaluation dictionary, returned from
      result_dict_for_single_example().

  Returns:
    A dictionary of metric names to tuple of value_op and update_op that can be
    used as eval metric ops in tf.EstimatorSpec.
  """
  eval_metric_ops = {}
1094
1095
1096
1097
1098
  evaluator_options = evaluator_options_from_eval_config(eval_config)
  evaluators_list = get_evaluators(eval_config, categories, evaluator_options)
  for evaluator in evaluators_list:
    eval_metric_ops.update(evaluator.get_estimator_eval_metric_ops(
        eval_dict))
1099
  return eval_metric_ops
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123


def evaluator_options_from_eval_config(eval_config):
  """Produces a dictionary of evaluation options for each eval metric.

  Args:
    eval_config: An `eval_pb2.EvalConfig`.

  Returns:
    evaluator_options: A dictionary of metric names (see
      EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization
      keyword arguments. For example:
      evalator_options = {
        'coco_detection_metrics': {'include_metrics_per_category': True}
      }
  """
  eval_metric_fn_keys = eval_config.metrics_set
  evaluator_options = {}
  for eval_metric_fn_key in eval_metric_fn_keys:
    if eval_metric_fn_key in ('coco_detection_metrics', 'coco_mask_metrics'):
      evaluator_options[eval_metric_fn_key] = {
          'include_metrics_per_category': (
              eval_config.include_metrics_per_category)
      }
1124
1125
1126
1127
1128
    elif eval_metric_fn_key == 'precision_at_recall_detection_metrics':
      evaluator_options[eval_metric_fn_key] = {
          'recall_lower_bound': (eval_config.recall_lower_bound),
          'recall_upper_bound': (eval_config.recall_upper_bound)
      }
1129
  return evaluator_options
1130
1131
1132
1133
1134


def has_densepose(eval_dict):
  return (fields.DetectionResultFields.detection_masks in eval_dict and
          fields.DetectionResultFields.detection_surface_coords in eval_dict)