Unverified Commit 52bb4ab1 authored by vivek rathod's avatar vivek rathod Committed by GitHub
Browse files

Merged commit includes the following changes: (#8803)



320117767  by ronnyvotel:

    DensePose postprocessing implementation.

--
320065853  by ronnyvotel:

    Updating how masks are reframed, so that it works on float and uint8 masks.

--
320061717  by yuhuic:

    Updated CenterNet restore_from_objects to allow the model to load the
    checkpoints saved during training.

--
319835172  by ronnyvotel:

    Updating how the DensePose UV Symmetries MAT file path is constructed and loaded.

--
319834678  by ronnyvotel:

    First update to CenterNetMetaArch for DensePose. Adding prediction and loss functionality.

--
319810261  by rathodv:

    Create a setup.py file to simplify installation.

    Usage:
    "python object_detection/packages/tf1/setup.py install" for TF1.
    "python object_detection/packages/tf2/setup.py install" for TF2.

    or to create source distribution
    "python object_detection/packages/tf1/setup.py sdist" for TF1.
    "python object_detection/packages/tf2/setup.py sdist" for TF2.

--
319803041  by sbeery:

    Updating documentation for export

--
319688087  by rathodv:

    Update as_matrix() to to_numpy() to avoid failures with python3.6

--
319686183  by vighneshb:

    Require tpu_name when use_tpu is set.

--
319613327  by aom:

    EfficientDet-style Data Augmentation.

--
319572180  by rathodv:

    Add TF2 SSD FPN (a.k.a RetinaNet) configs.

--
319553823  by rathodv:

    Internal Change.

--

PiperOrigin-RevId: 320117767
Co-authored-by: default avatarTF Object Detection Team <no-reply@google.com>
parent 3b56ba8d
...@@ -17,9 +17,8 @@ ...@@ -17,9 +17,8 @@
"""Tests for box_predictor_builder.""" """Tests for box_predictor_builder."""
import unittest import unittest
import mock from unittest import mock # pylint: disable=g-importing-member
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
from google.protobuf import text_format from google.protobuf import text_format
from object_detection.builders import box_predictor_builder from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder from object_detection.builders import hyperparams_builder
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
# ============================================================================== # ==============================================================================
"""Tests for graph_rewriter_builder.""" """Tests for graph_rewriter_builder."""
import unittest import unittest
import mock from unittest import mock # pylint: disable=g-importing-member
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
import tf_slim as slim import tf_slim as slim
......
...@@ -417,4 +417,12 @@ def build(preprocessor_step_config): ...@@ -417,4 +417,12 @@ def build(preprocessor_step_config):
'num_scales': config.num_scales 'num_scales': config.num_scales
} }
if step_type == 'random_scale_crop_and_pad_to_square':
config = preprocessor_step_config.random_scale_crop_and_pad_to_square
return preprocessor.random_scale_crop_and_pad_to_square, {
'scale_min': config.scale_min,
'scale_max': config.scale_max,
'output_size': config.output_size,
}
raise ValueError('Unknown preprocessing step.') raise ValueError('Unknown preprocessing step.')
...@@ -42,9 +42,6 @@ PART_NAMES = [ ...@@ -42,9 +42,6 @@ PART_NAMES = [
b'left_face', b'left_face',
] ]
_SRC_PATH = ('google3/third_party/tensorflow_models/object_detection/'
'dataset_tools/densepose')
def scale(dp_surface_coords, y_scale, x_scale, scope=None): def scale(dp_surface_coords, y_scale, x_scale, scope=None):
"""Scales DensePose coordinates in y and x dimensions. """Scales DensePose coordinates in y and x dimensions.
...@@ -266,10 +263,14 @@ class DensePoseHorizontalFlip(object): ...@@ -266,10 +263,14 @@ class DensePoseHorizontalFlip(object):
def __init__(self): def __init__(self):
"""Constructor.""" """Constructor."""
uv_symmetry_transforms_path = os.path.join( path = os.path.dirname(os.path.abspath(__file__))
tf.resource_loader.get_data_files_path(), '..', 'dataset_tools', uv_symmetry_transforms_path = tf.resource_loader.get_path_to_datafile(
'densepose', 'UV_symmetry_transforms.mat') os.path.join(path, '..', 'dataset_tools', 'densepose',
data = scipy.io.loadmat(uv_symmetry_transforms_path) 'UV_symmetry_transforms.mat'))
tf.logging.info('Loading DensePose symmetry transforms file from {}'.format(
uv_symmetry_transforms_path))
with tf.io.gfile.GFile(uv_symmetry_transforms_path, 'rb') as f:
data = scipy.io.loadmat(f)
# Create lookup maps which indicate how a VU coordinate changes after a # Create lookup maps which indicate how a VU coordinate changes after a
# horizontal flip. # horizontal flip.
......
...@@ -102,7 +102,7 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)): ...@@ -102,7 +102,7 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
Args: Args:
field: a string key, options are field: a string key, options are
fields.BoxListFields.{boxes,classes,masks,keypoints, fields.BoxListFields.{boxes,classes,masks,keypoints,
keypoint_visibilities} or keypoint_visibilities, densepose_*}
fields.InputDataFields.is_annotated. fields.InputDataFields.is_annotated.
Returns: Returns:
...@@ -123,7 +123,7 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)): ...@@ -123,7 +123,7 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
Args: Args:
field: a string key, options are field: a string key, options are
fields.BoxListFields.{boxes,classes,masks,keypoints, fields.BoxListFields.{boxes,classes,masks,keypoints,
keypoint_visibilities} or keypoint_visibilities, densepose_*} or
fields.InputDataFields.is_annotated. fields.InputDataFields.is_annotated.
Returns: Returns:
...@@ -288,19 +288,23 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)): ...@@ -288,19 +288,23 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
""" """
pass pass
def provide_groundtruth(self, def provide_groundtruth(
groundtruth_boxes_list, self,
groundtruth_classes_list, groundtruth_boxes_list,
groundtruth_masks_list=None, groundtruth_classes_list,
groundtruth_keypoints_list=None, groundtruth_masks_list=None,
groundtruth_keypoint_visibilities_list=None, groundtruth_keypoints_list=None,
groundtruth_weights_list=None, groundtruth_keypoint_visibilities_list=None,
groundtruth_confidences_list=None, groundtruth_dp_num_points_list=None,
groundtruth_is_crowd_list=None, groundtruth_dp_part_ids_list=None,
groundtruth_group_of_list=None, groundtruth_dp_surface_coords_list=None,
groundtruth_area_list=None, groundtruth_weights_list=None,
is_annotated_list=None, groundtruth_confidences_list=None,
groundtruth_labeled_classes=None): groundtruth_is_crowd_list=None,
groundtruth_group_of_list=None,
groundtruth_area_list=None,
is_annotated_list=None,
groundtruth_labeled_classes=None):
"""Provide groundtruth tensors. """Provide groundtruth tensors.
Args: Args:
...@@ -324,6 +328,15 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)): ...@@ -324,6 +328,15 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
`groundtruth_keypoint_visibilities_list`). `groundtruth_keypoint_visibilities_list`).
groundtruth_keypoint_visibilities_list: a list of 3-D tf.bool tensors groundtruth_keypoint_visibilities_list: a list of 3-D tf.bool tensors
of shape [num_boxes, num_keypoints] containing keypoint visibilities. of shape [num_boxes, num_keypoints] containing keypoint visibilities.
groundtruth_dp_num_points_list: a list of 1-D tf.int32 tensors of shape
[num_boxes] containing the number of DensePose sampled points.
groundtruth_dp_part_ids_list: a list of 2-D tf.int32 tensors of shape
[num_boxes, max_sampled_points] containing the DensePose part ids
(0-indexed) for each sampled point. Note that there may be padding.
groundtruth_dp_surface_coords_list: a list of 3-D tf.float32 tensors of
shape [num_boxes, max_sampled_points, 4] containing the DensePose
surface coordinates for each sampled point. Note that there may be
padding.
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes. [num_boxes] containing weights for groundtruth boxes.
groundtruth_confidences_list: A list of 2-D tf.float32 tensors of shape groundtruth_confidences_list: A list of 2-D tf.float32 tensors of shape
...@@ -361,6 +374,18 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)): ...@@ -361,6 +374,18 @@ class DetectionModel(six.with_metaclass(abc.ABCMeta, _BaseClass)):
self._groundtruth_lists[ self._groundtruth_lists[
fields.BoxListFields.keypoint_visibilities] = ( fields.BoxListFields.keypoint_visibilities] = (
groundtruth_keypoint_visibilities_list) groundtruth_keypoint_visibilities_list)
if groundtruth_dp_num_points_list:
self._groundtruth_lists[
fields.BoxListFields.densepose_num_points] = (
groundtruth_dp_num_points_list)
if groundtruth_dp_part_ids_list:
self._groundtruth_lists[
fields.BoxListFields.densepose_part_ids] = (
groundtruth_dp_part_ids_list)
if groundtruth_dp_surface_coords_list:
self._groundtruth_lists[
fields.BoxListFields.densepose_surface_coords] = (
groundtruth_dp_surface_coords_list)
if groundtruth_is_crowd_list: if groundtruth_is_crowd_list:
self._groundtruth_lists[ self._groundtruth_lists[
fields.BoxListFields.is_crowd] = groundtruth_is_crowd_list fields.BoxListFields.is_crowd] = groundtruth_is_crowd_list
......
...@@ -3984,7 +3984,7 @@ def random_square_crop_by_scale(image, boxes, labels, label_weights, ...@@ -3984,7 +3984,7 @@ def random_square_crop_by_scale(image, boxes, labels, label_weights,
Args: Args:
image: rank 3 float32 tensor containing 1 image -> image: rank 3 float32 tensor containing 1 image ->
[height, width,channels]. [height, width, channels].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4]. boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4].
Boxes are in normalized form meaning their coordinates vary Boxes are in normalized form meaning their coordinates vary
between [0, 1]. Each row is in the form of [ymin, xmin, ymax, xmax]. between [0, 1]. Each row is in the form of [ymin, xmin, ymax, xmax].
...@@ -4128,6 +4128,131 @@ def random_square_crop_by_scale(image, boxes, labels, label_weights, ...@@ -4128,6 +4128,131 @@ def random_square_crop_by_scale(image, boxes, labels, label_weights,
return return_values return return_values
def random_scale_crop_and_pad_to_square(
image,
boxes,
labels,
label_weights,
masks=None,
keypoints=None,
scale_min=0.1,
scale_max=2.0,
output_size=512,
resize_method=tf.image.ResizeMethod.BILINEAR,
seed=None):
"""Randomly scale, crop, and then pad an image to fixed square dimensions.
Randomly scale, crop, and then pad an image to the desired square output
dimensions. Specifically, this method first samples a random_scale factor
from a uniform distribution between scale_min and scale_max, and then resizes
the image such that it's maximum dimension is (output_size * random_scale).
Secondly, a square output_size crop is extracted from the resized image
(note, this will only occur when random_scale > 1.0). Lastly, the cropped
region is padded to the desired square output_size, by filling with zeros.
The augmentation is borrowed from [1]
[1]: https://arxiv.org/abs/1911.09070
Args:
image: rank 3 float32 tensor containing 1 image ->
[height, width, channels].
boxes: rank 2 float32 tensor containing the bounding boxes -> [N, 4]. Boxes
are in normalized form meaning their coordinates vary between [0, 1]. Each
row is in the form of [ymin, xmin, ymax, xmax]. Boxes on the crop boundary
are clipped to the boundary and boxes falling outside the crop are
ignored.
labels: rank 1 int32 tensor containing the object classes.
label_weights: float32 tensor of shape [num_instances] representing the
weight for each box.
masks: (optional) rank 3 float32 tensor with shape [num_instances, height,
width] containing instance masks. The masks are of the same height, width
as the input `image`.
keypoints: (optional) rank 3 float32 tensor with shape [num_instances,
num_keypoints, 2]. The keypoints are in y-x normalized coordinates.
scale_min: float, the minimum value for the random scale factor.
scale_max: float, the maximum value for the random scale factor.
output_size: int, the desired (square) output image size.
resize_method: tf.image.ResizeMethod, resize method to use when scaling the
input images.
seed: random seed.
Returns:
image: image which is the same rank as input image.
boxes: boxes which is the same rank as input boxes.
Boxes are in normalized form.
labels: new labels.
label_weights: rank 1 float32 tensor with shape [num_instances].
masks: rank 3 float32 tensor with shape [num_instances, height, width]
containing instance masks.
"""
img_shape = tf.shape(image)
input_height, input_width = img_shape[0], img_shape[1]
random_scale = tf.random_uniform([], scale_min, scale_max, seed=seed)
# Compute the scaled height and width from the random scale.
max_input_dim = tf.cast(tf.maximum(input_height, input_width), tf.float32)
input_ar_y = tf.cast(input_height, tf.float32) / max_input_dim
input_ar_x = tf.cast(input_width, tf.float32) / max_input_dim
scaled_height = tf.cast(random_scale * output_size * input_ar_y, tf.int32)
scaled_width = tf.cast(random_scale * output_size * input_ar_x, tf.int32)
# Compute the offsets:
offset_y = tf.cast(scaled_height - output_size, tf.float32)
offset_x = tf.cast(scaled_width - output_size, tf.float32)
offset_y = tf.maximum(0.0, offset_y) * tf.random_uniform([], 0, 1, seed=seed)
offset_x = tf.maximum(0.0, offset_x) * tf.random_uniform([], 0, 1, seed=seed)
offset_y = tf.cast(offset_y, tf.int32)
offset_x = tf.cast(offset_x, tf.int32)
# Scale, crop, and pad the input image.
scaled_image = tf.image.resize_images(
image, [scaled_height, scaled_width], method=resize_method)
scaled_image = scaled_image[offset_y:offset_y + output_size,
offset_x:offset_x + output_size, :]
output_image = tf.image.pad_to_bounding_box(scaled_image, 0, 0, output_size,
output_size)
# Update the boxes.
new_window = tf.cast(
tf.stack([offset_y, offset_x,
offset_y + output_size, offset_x + output_size]),
dtype=tf.float32)
new_window /= tf.cast(
tf.stack([scaled_height, scaled_width, scaled_height, scaled_width]),
dtype=tf.float32)
boxlist = box_list.BoxList(boxes)
boxlist = box_list_ops.change_coordinate_frame(boxlist, new_window)
boxlist, indices = box_list_ops.prune_completely_outside_window(
boxlist, [0.0, 0.0, 1.0, 1.0])
boxlist = box_list_ops.clip_to_window(
boxlist, [0.0, 0.0, 1.0, 1.0], filter_nonoverlapping=False)
return_values = [output_image, boxlist.get(),
tf.gather(labels, indices),
tf.gather(label_weights, indices)]
if masks is not None:
new_masks = tf.expand_dims(masks, -1)
new_masks = tf.image.resize_images(
new_masks, [scaled_height, scaled_width], method=resize_method)
new_masks = new_masks[:, offset_y:offset_y + output_size,
offset_x:offset_x + output_size, :]
new_masks = tf.image.pad_to_bounding_box(
new_masks, 0, 0, output_size, output_size)
new_masks = tf.squeeze(new_masks, [-1])
return_values.append(tf.gather(new_masks, indices))
if keypoints is not None:
keypoints = tf.gather(keypoints, indices)
keypoints = keypoint_ops.change_coordinate_frame(keypoints, new_window)
keypoints = keypoint_ops.prune_outside_window(
keypoints, [0.0, 0.0, 1.0, 1.0])
return_values.append(keypoints)
return return_values
def get_default_func_arg_map(include_label_weights=True, def get_default_func_arg_map(include_label_weights=True,
include_label_confidences=False, include_label_confidences=False,
include_multiclass_scores=False, include_multiclass_scores=False,
...@@ -4230,15 +4355,14 @@ def get_default_func_arg_map(include_label_weights=True, ...@@ -4230,15 +4355,14 @@ def get_default_func_arg_map(include_label_weights=True,
random_adjust_saturation: (fields.InputDataFields.image,), random_adjust_saturation: (fields.InputDataFields.image,),
random_distort_color: (fields.InputDataFields.image,), random_distort_color: (fields.InputDataFields.image,),
random_jitter_boxes: (fields.InputDataFields.groundtruth_boxes,), random_jitter_boxes: (fields.InputDataFields.groundtruth_boxes,),
random_crop_image: (fields.InputDataFields.image, random_crop_image:
fields.InputDataFields.groundtruth_boxes, (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_boxes,
groundtruth_label_weights, fields.InputDataFields.groundtruth_classes,
groundtruth_label_confidences, multiclass_scores, groundtruth_label_weights, groundtruth_label_confidences,
groundtruth_instance_masks, groundtruth_keypoints, multiclass_scores, groundtruth_instance_masks, groundtruth_keypoints,
groundtruth_keypoint_visibilities, groundtruth_keypoint_visibilities, groundtruth_dp_num_points,
groundtruth_dp_num_points, groundtruth_dp_part_ids, groundtruth_dp_part_ids, groundtruth_dp_surface_coords),
groundtruth_dp_surface_coords),
random_pad_image: random_pad_image:
(fields.InputDataFields.image, (fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes, groundtruth_instance_masks, fields.InputDataFields.groundtruth_boxes, groundtruth_instance_masks,
...@@ -4361,6 +4485,12 @@ def get_default_func_arg_map(include_label_weights=True, ...@@ -4361,6 +4485,12 @@ def get_default_func_arg_map(include_label_weights=True,
fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights, groundtruth_instance_masks, groundtruth_label_weights, groundtruth_instance_masks,
groundtruth_keypoints), groundtruth_keypoints),
random_scale_crop_and_pad_to_square:
(fields.InputDataFields.image,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_classes,
groundtruth_label_weights, groundtruth_instance_masks,
groundtruth_keypoints),
} }
return prep_func_arg_map return prep_func_arg_map
......
...@@ -712,76 +712,6 @@ class PreprocessorTest(test_case.TestCase, parameterized.TestCase): ...@@ -712,76 +712,6 @@ class PreprocessorTest(test_case.TestCase, parameterized.TestCase):
test_masks=True, test_masks=True,
test_keypoints=True) test_keypoints=True)
@parameterized.parameters(
{'include_dense_pose': False},
{'include_dense_pose': True}
)
def testRunRandomHorizontalFlipWithMaskAndKeypoints(self, include_dense_pose):
def graph_fn():
preprocess_options = [(preprocessor.random_horizontal_flip, {})]
image_height = 3
image_width = 3
images = tf.random_uniform([1, image_height, image_width, 3])
boxes = self.createTestBoxes()
masks = self.createTestMasks()
keypoints, keypoint_visibilities = self.createTestKeypoints()
dp_num_point, dp_part_ids, dp_surface_coords = self.createTestDensePose()
keypoint_flip_permutation = self.createKeypointFlipPermutation()
tensor_dict = {
fields.InputDataFields.image:
images,
fields.InputDataFields.groundtruth_boxes:
boxes,
fields.InputDataFields.groundtruth_instance_masks:
masks,
fields.InputDataFields.groundtruth_keypoints:
keypoints,
fields.InputDataFields.groundtruth_keypoint_visibilities:
keypoint_visibilities
}
if include_dense_pose:
tensor_dict.update({
fields.InputDataFields.groundtruth_dp_num_points: dp_num_point,
fields.InputDataFields.groundtruth_dp_part_ids: dp_part_ids,
fields.InputDataFields.groundtruth_dp_surface_coords:
dp_surface_coords
})
preprocess_options = [(preprocessor.random_horizontal_flip, {
'keypoint_flip_permutation': keypoint_flip_permutation
})]
preprocessor_arg_map = preprocessor.get_default_func_arg_map(
include_instance_masks=True,
include_keypoints=True,
include_keypoint_visibilities=True,
include_dense_pose=include_dense_pose)
tensor_dict = preprocessor.preprocess(
tensor_dict, preprocess_options, func_arg_map=preprocessor_arg_map)
boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes]
masks = tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
keypoints = tensor_dict[fields.InputDataFields.groundtruth_keypoints]
keypoint_visibilities = tensor_dict[
fields.InputDataFields.groundtruth_keypoint_visibilities]
output_tensors = [boxes, masks, keypoints, keypoint_visibilities]
if include_dense_pose:
dp_num_points = tensor_dict[
fields.InputDataFields.groundtruth_dp_num_points]
dp_part_ids = tensor_dict[
fields.InputDataFields.groundtruth_dp_part_ids]
dp_surface_coords = tensor_dict[
fields.InputDataFields.groundtruth_dp_surface_coords]
output_tensors.extend([dp_num_points, dp_part_ids, dp_surface_coords])
return output_tensors
output_tensors = self.execute_cpu(graph_fn, [])
self.assertIsNotNone(output_tensors[0]) # Boxes.
self.assertIsNotNone(output_tensors[1]) # Masks.
self.assertIsNotNone(output_tensors[2]) # Keypoints
self.assertIsNotNone(output_tensors[3]) # Keypoint Visibilities.
if include_dense_pose:
self.assertIsNotNone(output_tensors[4]) # DensePose Num Points.
self.assertIsNotNone(output_tensors[5]) # DensePose Part IDs.
self.assertIsNotNone(output_tensors[6]) # DensePose Surface Coords
def testRandomVerticalFlip(self): def testRandomVerticalFlip(self):
...@@ -2380,7 +2310,6 @@ class PreprocessorTest(test_case.TestCase, parameterized.TestCase): ...@@ -2380,7 +2310,6 @@ class PreprocessorTest(test_case.TestCase, parameterized.TestCase):
@parameterized.parameters( @parameterized.parameters(
{'include_dense_pose': False}, {'include_dense_pose': False},
{'include_dense_pose': True}
) )
def testRandomPadImageWithKeypointsAndMasks(self, include_dense_pose): def testRandomPadImageWithKeypointsAndMasks(self, include_dense_pose):
def graph_fn(): def graph_fn():
...@@ -3912,6 +3841,90 @@ class PreprocessorTest(test_case.TestCase, parameterized.TestCase): ...@@ -3912,6 +3841,90 @@ class PreprocessorTest(test_case.TestCase, parameterized.TestCase):
size = max(image.shape) size = max(image.shape)
self.assertAlmostEqual(scale * 256.0, size) self.assertAlmostEqual(scale * 256.0, size)
self.assertAllClose(image[:, :, 0], masks[0, :, :])
@parameterized.named_parameters(('scale_0_1', 0.1), ('scale_1_0', 1.0),
('scale_2_0', 2.0))
def test_random_scale_crop_and_pad_to_square(self, scale):
def graph_fn():
image = np.random.randn(512, 256, 1)
box_centers = [0.25, 0.5, 0.75]
box_size = 0.1
box_corners = []
box_labels = []
box_label_weights = []
keypoints = []
masks = []
for center_y in box_centers:
for center_x in box_centers:
box_corners.append(
[center_y - box_size / 2.0, center_x - box_size / 2.0,
center_y + box_size / 2.0, center_x + box_size / 2.0])
box_labels.append([1])
box_label_weights.append([1.])
keypoints.append(
[[center_y - box_size / 2.0, center_x - box_size / 2.0],
[center_y + box_size / 2.0, center_x + box_size / 2.0]])
masks.append(image[:, :, 0].reshape(512, 256))
image = tf.constant(image)
boxes = tf.constant(box_corners)
labels = tf.constant(box_labels)
label_weights = tf.constant(box_label_weights)
keypoints = tf.constant(keypoints)
masks = tf.constant(np.stack(masks))
(new_image, new_boxes, _, _, new_masks,
new_keypoints) = preprocessor.random_scale_crop_and_pad_to_square(
image,
boxes,
labels,
label_weights,
masks=masks,
keypoints=keypoints,
scale_min=scale,
scale_max=scale,
output_size=512)
return new_image, new_boxes, new_masks, new_keypoints
image, boxes, masks, keypoints = self.execute_cpu(graph_fn, [])
# Since random_scale_crop_and_pad_to_square may prune and clip boxes,
# we only need to find one of the boxes that was not clipped and check
# that it matches the expected dimensions. Note, assertAlmostEqual(a, b)
# is equivalent to round(a-b, 7) == 0.
any_box_has_correct_size = False
effective_scale_y = int(scale * 512) / 512.0
effective_scale_x = int(scale * 256) / 512.0
expected_size_y = 0.1 * effective_scale_y
expected_size_x = 0.1 * effective_scale_x
for box in boxes:
ymin, xmin, ymax, xmax = box
any_box_has_correct_size |= (
(round(ymin, 7) != 0.0) and (round(xmin, 7) != 0.0) and
(round(ymax, 7) != 1.0) and (round(xmax, 7) != 1.0) and
(round((ymax - ymin) - expected_size_y, 7) == 0.0) and
(round((xmax - xmin) - expected_size_x, 7) == 0.0))
self.assertTrue(any_box_has_correct_size)
# Similar to the approach above where we check for at least one box with the
# expected dimensions, we check for at least one pair of keypoints whose
# distance matches the expected dimensions.
any_keypoint_pair_has_correct_dist = False
for keypoint_pair in keypoints:
ymin, xmin = keypoint_pair[0]
ymax, xmax = keypoint_pair[1]
any_keypoint_pair_has_correct_dist |= (
(round(ymin, 7) != 0.0) and (round(xmin, 7) != 0.0) and
(round(ymax, 7) != 1.0) and (round(xmax, 7) != 1.0) and
(round((ymax - ymin) - expected_size_y, 7) == 0.0) and
(round((xmax - xmin) - expected_size_x, 7) == 0.0))
self.assertTrue(any_keypoint_pair_has_correct_dist)
self.assertAlmostEqual(512.0, image.shape[0])
self.assertAlmostEqual(512.0, image.shape[1])
self.assertAllClose(image[:, :, 0], self.assertAllClose(image[:, :, 0],
masks[0, :, :]) masks[0, :, :])
......
...@@ -141,6 +141,8 @@ class DetectionResultFields(object): ...@@ -141,6 +141,8 @@ class DetectionResultFields(object):
for detection boxes in the image including background class. for detection boxes in the image including background class.
detection_classes: detection-level class labels. detection_classes: detection-level class labels.
detection_masks: contains a segmentation mask for each detection box. detection_masks: contains a segmentation mask for each detection box.
detection_surface_coords: contains DensePose surface coordinates for each
box.
detection_boundaries: contains an object boundary for each detection box. detection_boundaries: contains an object boundary for each detection box.
detection_keypoints: contains detection keypoints for each detection box. detection_keypoints: contains detection keypoints for each detection box.
detection_keypoint_scores: contains detection keypoint scores. detection_keypoint_scores: contains detection keypoint scores.
...@@ -161,6 +163,7 @@ class DetectionResultFields(object): ...@@ -161,6 +163,7 @@ class DetectionResultFields(object):
detection_features = 'detection_features' detection_features = 'detection_features'
detection_classes = 'detection_classes' detection_classes = 'detection_classes'
detection_masks = 'detection_masks' detection_masks = 'detection_masks'
detection_surface_coords = 'detection_surface_coords'
detection_boundaries = 'detection_boundaries' detection_boundaries = 'detection_boundaries'
detection_keypoints = 'detection_keypoints' detection_keypoints = 'detection_keypoints'
detection_keypoint_scores = 'detection_keypoint_scores' detection_keypoint_scores = 'detection_keypoint_scores'
...@@ -182,7 +185,11 @@ class BoxListFields(object): ...@@ -182,7 +185,11 @@ class BoxListFields(object):
masks: masks per bounding box. masks: masks per bounding box.
boundaries: boundaries per bounding box. boundaries: boundaries per bounding box.
keypoints: keypoints per bounding box. keypoints: keypoints per bounding box.
keypoint_visibilities: keypoint visibilities per bounding box.
keypoint_heatmaps: keypoint heatmaps per bounding box. keypoint_heatmaps: keypoint heatmaps per bounding box.
densepose_num_points: number of DensePose points per bounding box.
densepose_part_ids: DensePose part ids per bounding box.
densepose_surface_coords: DensePose surface coordinates per bounding box.
is_crowd: is_crowd annotation per bounding box. is_crowd: is_crowd annotation per bounding box.
""" """
boxes = 'boxes' boxes = 'boxes'
...@@ -196,6 +203,9 @@ class BoxListFields(object): ...@@ -196,6 +203,9 @@ class BoxListFields(object):
keypoints = 'keypoints' keypoints = 'keypoints'
keypoint_visibilities = 'keypoint_visibilities' keypoint_visibilities = 'keypoint_visibilities'
keypoint_heatmaps = 'keypoint_heatmaps' keypoint_heatmaps = 'keypoint_heatmaps'
densepose_num_points = 'densepose_num_points'
densepose_part_ids = 'densepose_part_ids'
densepose_surface_coords = 'densepose_surface_coords'
is_crowd = 'is_crowd' is_crowd = 'is_crowd'
group_of = 'group_of' group_of = 'group_of'
......
...@@ -50,13 +50,16 @@ import io ...@@ -50,13 +50,16 @@ import io
import itertools import itertools
import json import json
import os import os
import apache_beam as beam
import numpy as np import numpy as np
import PIL.Image import PIL.Image
import six import six
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
class ReKeyDataFn(beam.DoFn): class ReKeyDataFn(beam.DoFn):
"""Re-keys tfrecords by sequence_key. """Re-keys tfrecords by sequence_key.
......
...@@ -22,7 +22,7 @@ import datetime ...@@ -22,7 +22,7 @@ import datetime
import os import os
import tempfile import tempfile
import unittest import unittest
import apache_beam as beam
import numpy as np import numpy as np
import six import six
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
...@@ -31,6 +31,12 @@ from object_detection.dataset_tools.context_rcnn import add_context_to_examples ...@@ -31,6 +31,12 @@ from object_detection.dataset_tools.context_rcnn import add_context_to_examples
from object_detection.utils import tf_version from object_detection.utils import tf_version
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
@contextlib.contextmanager @contextlib.contextmanager
def InMemoryTFRecord(entries): def InMemoryTFRecord(entries):
temp = tempfile.NamedTemporaryFile(delete=False) temp = tempfile.NamedTemporaryFile(delete=False)
......
...@@ -39,12 +39,16 @@ import io ...@@ -39,12 +39,16 @@ import io
import json import json
import logging import logging
import os import os
import apache_beam as beam
import numpy as np import numpy as np
import PIL.Image import PIL.Image
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
from object_detection.utils import dataset_util from object_detection.utils import dataset_util
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
class ParseImage(beam.DoFn): class ParseImage(beam.DoFn):
"""A DoFn that parses a COCO-CameraTraps json and emits TFRecords.""" """A DoFn that parses a COCO-CameraTraps json and emits TFRecords."""
......
...@@ -22,7 +22,6 @@ import os ...@@ -22,7 +22,6 @@ import os
import tempfile import tempfile
import unittest import unittest
import apache_beam as beam
import numpy as np import numpy as np
from PIL import Image from PIL import Image
...@@ -30,6 +29,11 @@ import tensorflow.compat.v1 as tf ...@@ -30,6 +29,11 @@ import tensorflow.compat.v1 as tf
from object_detection.dataset_tools.context_rcnn import create_cococameratraps_tfexample_main from object_detection.dataset_tools.context_rcnn import create_cococameratraps_tfexample_main
from object_detection.utils import tf_version from object_detection.utils import tf_version
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.') @unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class CreateCOCOCameraTrapsTfexampleTest(tf.test.TestCase): class CreateCOCOCameraTrapsTfexampleTest(tf.test.TestCase):
......
...@@ -48,8 +48,11 @@ from __future__ import print_function ...@@ -48,8 +48,11 @@ from __future__ import print_function
import argparse import argparse
import os import os
import threading import threading
import apache_beam as beam
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
class GenerateDetectionDataFn(beam.DoFn): class GenerateDetectionDataFn(beam.DoFn):
......
...@@ -22,7 +22,6 @@ import contextlib ...@@ -22,7 +22,6 @@ import contextlib
import os import os
import tempfile import tempfile
import unittest import unittest
import apache_beam as beam
import numpy as np import numpy as np
import six import six
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
...@@ -39,6 +38,11 @@ if six.PY2: ...@@ -39,6 +38,11 @@ if six.PY2:
else: else:
mock = unittest.mock mock = unittest.mock
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
class FakeModel(model.DetectionModel): class FakeModel(model.DetectionModel):
"""A Fake Detection model with expected output nodes from post-processing.""" """A Fake Detection model with expected output nodes from post-processing."""
......
...@@ -34,7 +34,8 @@ python tensorflow_models/object_detection/export_inference_graph.py \ ...@@ -34,7 +34,8 @@ python tensorflow_models/object_detection/export_inference_graph.py \
--input_type tf_example \ --input_type tf_example \
--pipeline_config_path path/to/faster_rcnn_model.config \ --pipeline_config_path path/to/faster_rcnn_model.config \
--trained_checkpoint_prefix path/to/model.ckpt \ --trained_checkpoint_prefix path/to/model.ckpt \
--output_directory path/to/exported_model_directory --output_directory path/to/exported_model_directory \
--additional_output_tensor_names detection_features
python generate_embedding_data.py \ python generate_embedding_data.py \
--alsologtostderr \ --alsologtostderr \
...@@ -52,11 +53,15 @@ import datetime ...@@ -52,11 +53,15 @@ import datetime
import os import os
import threading import threading
import apache_beam as beam
import numpy as np import numpy as np
import six import six
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
class GenerateEmbeddingDataFn(beam.DoFn): class GenerateEmbeddingDataFn(beam.DoFn):
"""Generates embedding data for camera trap images. """Generates embedding data for camera trap images.
......
...@@ -21,7 +21,6 @@ import contextlib ...@@ -21,7 +21,6 @@ import contextlib
import os import os
import tempfile import tempfile
import unittest import unittest
import apache_beam as beam
import numpy as np import numpy as np
import six import six
import tensorflow.compat.v1 as tf import tensorflow.compat.v1 as tf
...@@ -38,6 +37,11 @@ if six.PY2: ...@@ -38,6 +37,11 @@ if six.PY2:
else: else:
mock = unittest.mock mock = unittest.mock
try:
import apache_beam as beam # pylint:disable=g-import-not-at-top
except ModuleNotFoundError:
pass
class FakeModel(model.DetectionModel): class FakeModel(model.DetectionModel):
"""A Fake Detection model with expected output nodes from post-processing.""" """A Fake Detection model with expected output nodes from post-processing."""
......
...@@ -51,25 +51,25 @@ def tf_example_from_annotations_data_frame(annotations_data_frame, label_map, ...@@ -51,25 +51,25 @@ def tf_example_from_annotations_data_frame(annotations_data_frame, label_map,
feature_map = { feature_map = {
standard_fields.TfExampleFields.object_bbox_ymin: standard_fields.TfExampleFields.object_bbox_ymin:
dataset_util.float_list_feature( dataset_util.float_list_feature(
filtered_data_frame_boxes.YMin.as_matrix()), filtered_data_frame_boxes.YMin.to_numpy()),
standard_fields.TfExampleFields.object_bbox_xmin: standard_fields.TfExampleFields.object_bbox_xmin:
dataset_util.float_list_feature( dataset_util.float_list_feature(
filtered_data_frame_boxes.XMin.as_matrix()), filtered_data_frame_boxes.XMin.to_numpy()),
standard_fields.TfExampleFields.object_bbox_ymax: standard_fields.TfExampleFields.object_bbox_ymax:
dataset_util.float_list_feature( dataset_util.float_list_feature(
filtered_data_frame_boxes.YMax.as_matrix()), filtered_data_frame_boxes.YMax.to_numpy()),
standard_fields.TfExampleFields.object_bbox_xmax: standard_fields.TfExampleFields.object_bbox_xmax:
dataset_util.float_list_feature( dataset_util.float_list_feature(
filtered_data_frame_boxes.XMax.as_matrix()), filtered_data_frame_boxes.XMax.to_numpy()),
standard_fields.TfExampleFields.object_class_text: standard_fields.TfExampleFields.object_class_text:
dataset_util.bytes_list_feature([ dataset_util.bytes_list_feature([
six.ensure_binary(label_text) six.ensure_binary(label_text)
for label_text in filtered_data_frame_boxes.LabelName.as_matrix() for label_text in filtered_data_frame_boxes.LabelName.to_numpy()
]), ]),
standard_fields.TfExampleFields.object_class_label: standard_fields.TfExampleFields.object_class_label:
dataset_util.int64_list_feature( dataset_util.int64_list_feature(
filtered_data_frame_boxes.LabelName.map( filtered_data_frame_boxes.LabelName.map(
lambda x: label_map[x]).as_matrix()), lambda x: label_map[x]).to_numpy()),
standard_fields.TfExampleFields.filename: standard_fields.TfExampleFields.filename:
dataset_util.bytes_feature( dataset_util.bytes_feature(
six.ensure_binary('{}.jpg'.format(image_id))), six.ensure_binary('{}.jpg'.format(image_id))),
...@@ -82,31 +82,31 @@ def tf_example_from_annotations_data_frame(annotations_data_frame, label_map, ...@@ -82,31 +82,31 @@ def tf_example_from_annotations_data_frame(annotations_data_frame, label_map,
if 'IsGroupOf' in filtered_data_frame.columns: if 'IsGroupOf' in filtered_data_frame.columns:
feature_map[standard_fields.TfExampleFields. feature_map[standard_fields.TfExampleFields.
object_group_of] = dataset_util.int64_list_feature( object_group_of] = dataset_util.int64_list_feature(
filtered_data_frame_boxes.IsGroupOf.as_matrix().astype(int)) filtered_data_frame_boxes.IsGroupOf.to_numpy().astype(int))
if 'IsOccluded' in filtered_data_frame.columns: if 'IsOccluded' in filtered_data_frame.columns:
feature_map[standard_fields.TfExampleFields. feature_map[standard_fields.TfExampleFields.
object_occluded] = dataset_util.int64_list_feature( object_occluded] = dataset_util.int64_list_feature(
filtered_data_frame_boxes.IsOccluded.as_matrix().astype( filtered_data_frame_boxes.IsOccluded.to_numpy().astype(
int)) int))
if 'IsTruncated' in filtered_data_frame.columns: if 'IsTruncated' in filtered_data_frame.columns:
feature_map[standard_fields.TfExampleFields. feature_map[standard_fields.TfExampleFields.
object_truncated] = dataset_util.int64_list_feature( object_truncated] = dataset_util.int64_list_feature(
filtered_data_frame_boxes.IsTruncated.as_matrix().astype( filtered_data_frame_boxes.IsTruncated.to_numpy().astype(
int)) int))
if 'IsDepiction' in filtered_data_frame.columns: if 'IsDepiction' in filtered_data_frame.columns:
feature_map[standard_fields.TfExampleFields. feature_map[standard_fields.TfExampleFields.
object_depiction] = dataset_util.int64_list_feature( object_depiction] = dataset_util.int64_list_feature(
filtered_data_frame_boxes.IsDepiction.as_matrix().astype( filtered_data_frame_boxes.IsDepiction.to_numpy().astype(
int)) int))
if 'ConfidenceImageLabel' in filtered_data_frame_labels.columns: if 'ConfidenceImageLabel' in filtered_data_frame_labels.columns:
feature_map[standard_fields.TfExampleFields. feature_map[standard_fields.TfExampleFields.
image_class_label] = dataset_util.int64_list_feature( image_class_label] = dataset_util.int64_list_feature(
filtered_data_frame_labels.LabelName.map( filtered_data_frame_labels.LabelName.map(
lambda x: label_map[x]).as_matrix()) lambda x: label_map[x]).to_numpy())
feature_map[standard_fields.TfExampleFields feature_map[standard_fields.TfExampleFields
.image_class_text] = dataset_util.bytes_list_feature([ .image_class_text] = dataset_util.bytes_list_feature([
six.ensure_binary(label_text) for label_text in six.ensure_binary(label_text) for label_text in
filtered_data_frame_labels.LabelName.as_matrix() filtered_data_frame_labels.LabelName.to_numpy()
]), ]),
return tf.train.Example(features=tf.train.Features(feature=feature_map)) return tf.train.Example(features=tf.train.Features(feature=feature_map))
...@@ -552,7 +552,11 @@ def _resize_detection_masks(args): ...@@ -552,7 +552,11 @@ def _resize_detection_masks(args):
detection_boxes, detection_masks, image_shape = args detection_boxes, detection_masks, image_shape = args
detection_masks_reframed = ops.reframe_box_masks_to_image_masks( detection_masks_reframed = ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image_shape[0], image_shape[1]) detection_masks, detection_boxes, image_shape[0], image_shape[1])
return tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8) # If the masks are currently float, binarize them. Otherwise keep them as
# integers, since they have already been thresholded.
if detection_masks_reframed.dtype == tf.float32:
detection_masks_reframed = tf.greater(detection_masks_reframed, 0.5)
return tf.cast(detection_masks_reframed, tf.uint8)
def _resize_groundtruth_masks(args): def _resize_groundtruth_masks(args):
...@@ -570,6 +574,17 @@ def _resize_groundtruth_masks(args): ...@@ -570,6 +574,17 @@ def _resize_groundtruth_masks(args):
return tf.cast(tf.squeeze(mask, 3), tf.uint8) return tf.cast(tf.squeeze(mask, 3), tf.uint8)
def _resize_surface_coordinate_masks(args):
detection_boxes, surface_coords, image_shape = args
surface_coords_v, surface_coords_u = tf.unstack(surface_coords, axis=-1)
surface_coords_v_reframed = ops.reframe_box_masks_to_image_masks(
surface_coords_v, detection_boxes, image_shape[0], image_shape[1])
surface_coords_u_reframed = ops.reframe_box_masks_to_image_masks(
surface_coords_u, detection_boxes, image_shape[0], image_shape[1])
return tf.stack([surface_coords_v_reframed, surface_coords_u_reframed],
axis=-1)
def _scale_keypoint_to_absolute(args): def _scale_keypoint_to_absolute(args):
keypoints, image_shape = args keypoints, image_shape = args
return keypoint_ops.scale(keypoints, image_shape[0], image_shape[1]) return keypoint_ops.scale(keypoints, image_shape[0], image_shape[1])
...@@ -720,6 +735,12 @@ def result_dict_for_batched_example(images, ...@@ -720,6 +735,12 @@ def result_dict_for_batched_example(images,
num_keypoints] bool tensor with keypoint visibilities (Optional). num_keypoints] bool tensor with keypoint visibilities (Optional).
'groundtruth_labeled_classes': [batch_size, num_classes] int64 'groundtruth_labeled_classes': [batch_size, num_classes] int64
tensor of 1-indexed classes. (Optional) tensor of 1-indexed classes. (Optional)
'groundtruth_dp_num_points': [batch_size, max_number_of_boxes] int32
tensor. (Optional)
'groundtruth_dp_part_ids': [batch_size, max_number_of_boxes,
max_sampled_points] int32 tensor. (Optional)
'groundtruth_dp_surface_coords_list': [batch_size, max_number_of_boxes,
max_sampled_points, 4] float32 tensor. (Optional)
class_agnostic: Boolean indicating whether the detections are class-agnostic class_agnostic: Boolean indicating whether the detections are class-agnostic
(i.e. binary). Default False. (i.e. binary). Default False.
scale_to_absolute: Boolean indicating whether boxes and keypoints should be scale_to_absolute: Boolean indicating whether boxes and keypoints should be
...@@ -747,12 +768,16 @@ def result_dict_for_batched_example(images, ...@@ -747,12 +768,16 @@ def result_dict_for_batched_example(images,
'detection_scores': [batch_size, max_detections] float32 tensor of scores. 'detection_scores': [batch_size, max_detections] float32 tensor of scores.
'detection_classes': [batch_size, max_detections] int64 tensor of 1-indexed 'detection_classes': [batch_size, max_detections] int64 tensor of 1-indexed
classes. classes.
'detection_masks': [batch_size, max_detections, H, W] float32 tensor of 'detection_masks': [batch_size, max_detections, H, W] uint8 tensor of
binarized masks, reframed to full image masks. (Optional) instance masks, reframed to full image masks. Note that these may be
binarized (e.g. {0, 1}), or may contain 1-indexed part labels. (Optional)
'detection_keypoints': [batch_size, max_detections, num_keypoints, 2] 'detection_keypoints': [batch_size, max_detections, num_keypoints, 2]
float32 tensor containing keypoint coordinates. (Optional) float32 tensor containing keypoint coordinates. (Optional)
'detection_keypoint_scores': [batch_size, max_detections, num_keypoints] 'detection_keypoint_scores': [batch_size, max_detections, num_keypoints]
float32 tensor containing keypoint scores. (Optional) float32 tensor containing keypoint scores. (Optional)
'detection_surface_coords': [batch_size, max_detection, H, W, 2] float32
tensor with normalized surface coordinates (e.g. DensePose UV
coordinates). (Optional)
'num_detections': [batch_size] int64 tensor containing number of valid 'num_detections': [batch_size] int64 tensor containing number of valid
detections. detections.
'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in 'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in
...@@ -844,14 +869,21 @@ def result_dict_for_batched_example(images, ...@@ -844,14 +869,21 @@ def result_dict_for_batched_example(images,
if detection_fields.detection_masks in detections: if detection_fields.detection_masks in detections:
detection_masks = detections[detection_fields.detection_masks] detection_masks = detections[detection_fields.detection_masks]
# TODO(rathodv): This should be done in model's postprocess
# function ideally.
output_dict[detection_fields.detection_masks] = ( output_dict[detection_fields.detection_masks] = (
shape_utils.static_or_dynamic_map_fn( shape_utils.static_or_dynamic_map_fn(
_resize_detection_masks, _resize_detection_masks,
elems=[detection_boxes, detection_masks, elems=[detection_boxes, detection_masks,
original_image_spatial_shapes], original_image_spatial_shapes],
dtype=tf.uint8)) dtype=tf.uint8))
if detection_fields.detection_surface_coords in detections:
detection_surface_coords = detections[
detection_fields.detection_surface_coords]
output_dict[detection_fields.detection_surface_coords] = (
shape_utils.static_or_dynamic_map_fn(
_resize_surface_coordinate_masks,
elems=[detection_boxes, detection_surface_coords,
original_image_spatial_shapes],
dtype=tf.float32))
if detection_fields.detection_keypoints in detections: if detection_fields.detection_keypoints in detections:
detection_keypoints = detections[detection_fields.detection_keypoints] detection_keypoints = detections[detection_fields.detection_keypoints]
...@@ -1074,3 +1106,8 @@ def evaluator_options_from_eval_config(eval_config): ...@@ -1074,3 +1106,8 @@ def evaluator_options_from_eval_config(eval_config):
'recall_upper_bound': (eval_config.recall_upper_bound) 'recall_upper_bound': (eval_config.recall_upper_bound)
} }
return evaluator_options return evaluator_options
def has_densepose(eval_dict):
return (fields.DetectionResultFields.detection_masks in eval_dict and
fields.DetectionResultFields.detection_surface_coords in eval_dict)
...@@ -266,7 +266,7 @@ class CenterNetMetaArchHelpersTest(test_case.TestCase, parameterized.TestCase): ...@@ -266,7 +266,7 @@ class CenterNetMetaArchHelpersTest(test_case.TestCase, parameterized.TestCase):
masks_np[0, :, :3, 1] = 1 # Class 1. masks_np[0, :, :3, 1] = 1 # Class 1.
masks = tf.constant(masks_np) masks = tf.constant(masks_np)
true_image_shapes = tf.constant([[6, 8, 3]]) true_image_shapes = tf.constant([[6, 8, 3]])
instance_masks = cnma.convert_strided_predictions_to_instance_masks( instance_masks, _ = cnma.convert_strided_predictions_to_instance_masks(
boxes, classes, masks, stride=2, mask_height=2, mask_width=2, boxes, classes, masks, stride=2, mask_height=2, mask_width=2,
true_image_shapes=true_image_shapes) true_image_shapes=true_image_shapes)
return instance_masks return instance_masks
...@@ -289,6 +289,104 @@ class CenterNetMetaArchHelpersTest(test_case.TestCase, parameterized.TestCase): ...@@ -289,6 +289,104 @@ class CenterNetMetaArchHelpersTest(test_case.TestCase, parameterized.TestCase):
]) ])
np.testing.assert_array_equal(expected_instance_masks, instance_masks) np.testing.assert_array_equal(expected_instance_masks, instance_masks)
def test_convert_strided_predictions_raises_error_with_one_tensor(self):
def graph_fn():
boxes = tf.constant(
[
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.5, 0.5, 1.0],
[0.0, 0.0, 0.0, 0.0]],
], tf.float32)
classes = tf.constant(
[
[0, 1, 0],
], tf.int32)
masks_np = np.zeros((1, 4, 4, 2), dtype=np.float32)
masks_np[0, :, 2:, 0] = 1 # Class 0.
masks_np[0, :, :3, 1] = 1 # Class 1.
masks = tf.constant(masks_np)
true_image_shapes = tf.constant([[6, 8, 3]])
densepose_part_heatmap = tf.random.uniform(
[1, 4, 4, 24])
instance_masks, _ = cnma.convert_strided_predictions_to_instance_masks(
boxes, classes, masks, true_image_shapes,
densepose_part_heatmap=densepose_part_heatmap,
densepose_surface_coords=None)
return instance_masks
with self.assertRaises(ValueError):
self.execute_cpu(graph_fn, [])
def test_crop_and_threshold_masks(self):
boxes_np = np.array(
[[0., 0., 0.5, 0.5],
[0.25, 0.25, 1.0, 1.0]], dtype=np.float32)
classes_np = np.array([0, 2], dtype=np.int32)
masks_np = np.zeros((4, 4, _NUM_CLASSES), dtype=np.float32)
masks_np[0, 0, 0] = 0.8
masks_np[1, 1, 0] = 0.6
masks_np[3, 3, 2] = 0.7
part_heatmap_np = np.zeros((4, 4, _DENSEPOSE_NUM_PARTS), dtype=np.float32)
part_heatmap_np[0, 0, 4] = 1
part_heatmap_np[0, 0, 2] = 0.6 # Lower scoring.
part_heatmap_np[1, 1, 8] = 0.2
part_heatmap_np[3, 3, 4] = 0.5
surf_coords_np = np.zeros((4, 4, 2 * _DENSEPOSE_NUM_PARTS),
dtype=np.float32)
surf_coords_np[:, :, 8:10] = 0.2, 0.9
surf_coords_np[:, :, 16:18] = 0.3, 0.5
true_height, true_width = 10, 10
input_height, input_width = 10, 10
mask_height = 4
mask_width = 4
def graph_fn():
elems = [
tf.constant(boxes_np),
tf.constant(classes_np),
tf.constant(masks_np),
tf.constant(part_heatmap_np),
tf.constant(surf_coords_np),
tf.constant(true_height, dtype=tf.int32),
tf.constant(true_width, dtype=tf.int32)
]
part_masks, surface_coords = cnma.crop_and_threshold_masks(
elems, input_height, input_width, mask_height=mask_height,
mask_width=mask_width, densepose_class_index=0)
return part_masks, surface_coords
part_masks, surface_coords = self.execute_cpu(graph_fn, [])
expected_part_masks = np.zeros((2, 4, 4), dtype=np.uint8)
expected_part_masks[0, 0, 0] = 5 # Recall classes are 1-indexed in output.
expected_part_masks[0, 2, 2] = 9 # Recall classes are 1-indexed in output.
expected_part_masks[1, 3, 3] = 1 # Standard instance segmentation mask.
expected_surface_coords = np.zeros((2, 4, 4, 2), dtype=np.float32)
expected_surface_coords[0, 0, 0, :] = 0.2, 0.9
expected_surface_coords[0, 2, 2, :] = 0.3, 0.5
np.testing.assert_allclose(expected_part_masks, part_masks)
np.testing.assert_allclose(expected_surface_coords, surface_coords)
def test_gather_surface_coords_for_parts(self):
surface_coords_cropped_np = np.zeros((2, 5, 5, _DENSEPOSE_NUM_PARTS, 2),
dtype=np.float32)
surface_coords_cropped_np[0, 0, 0, 5] = 0.3, 0.4
surface_coords_cropped_np[0, 1, 0, 9] = 0.5, 0.6
highest_scoring_part_np = np.zeros((2, 5, 5), dtype=np.int32)
highest_scoring_part_np[0, 0, 0] = 5
highest_scoring_part_np[0, 1, 0] = 9
def graph_fn():
surface_coords_cropped = tf.constant(surface_coords_cropped_np,
tf.float32)
highest_scoring_part = tf.constant(highest_scoring_part_np, tf.int32)
surface_coords_gathered = cnma.gather_surface_coords_for_parts(
surface_coords_cropped, highest_scoring_part)
return surface_coords_gathered
surface_coords_gathered = self.execute_cpu(graph_fn, [])
np.testing.assert_allclose([0.3, 0.4], surface_coords_gathered[0, 0, 0])
np.testing.assert_allclose([0.5, 0.6], surface_coords_gathered[0, 1, 0])
def test_top_k_feature_map_locations(self): def test_top_k_feature_map_locations(self):
feature_map_np = np.zeros((2, 3, 3, 2), dtype=np.float32) feature_map_np = np.zeros((2, 3, 3, 2), dtype=np.float32)
feature_map_np[0, 2, 0, 1] = 1.0 feature_map_np[0, 2, 0, 1] = 1.0
...@@ -535,6 +633,8 @@ class CenterNetMetaArchHelpersTest(test_case.TestCase, parameterized.TestCase): ...@@ -535,6 +633,8 @@ class CenterNetMetaArchHelpersTest(test_case.TestCase, parameterized.TestCase):
keypoint_heatmap_np[1, 0, 1, 1] = 0.9 keypoint_heatmap_np[1, 0, 1, 1] = 0.9
keypoint_heatmap_np[1, 2, 0, 1] = 0.8 keypoint_heatmap_np[1, 2, 0, 1] = 0.8
# Note that the keypoint offsets are now per keypoint (as opposed to
# keypoint agnostic, in the test test_keypoint_candidate_prediction).
keypoint_heatmap_offsets_np = np.zeros((2, 3, 3, 4), dtype=np.float32) keypoint_heatmap_offsets_np = np.zeros((2, 3, 3, 4), dtype=np.float32)
keypoint_heatmap_offsets_np[0, 0, 0] = [0.5, 0.25, 0.0, 0.0] keypoint_heatmap_offsets_np[0, 0, 0] = [0.5, 0.25, 0.0, 0.0]
keypoint_heatmap_offsets_np[0, 2, 1] = [-0.25, 0.5, 0.0, 0.0] keypoint_heatmap_offsets_np[0, 2, 1] = [-0.25, 0.5, 0.0, 0.0]
...@@ -949,6 +1049,7 @@ class CenterNetMetaArchHelpersTest(test_case.TestCase, parameterized.TestCase): ...@@ -949,6 +1049,7 @@ class CenterNetMetaArchHelpersTest(test_case.TestCase, parameterized.TestCase):
_NUM_CLASSES = 10 _NUM_CLASSES = 10
_KEYPOINT_INDICES = [0, 1, 2, 3] _KEYPOINT_INDICES = [0, 1, 2, 3]
_NUM_KEYPOINTS = len(_KEYPOINT_INDICES) _NUM_KEYPOINTS = len(_KEYPOINT_INDICES)
_DENSEPOSE_NUM_PARTS = 24
_TASK_NAME = 'human_pose' _TASK_NAME = 'human_pose'
...@@ -991,6 +1092,20 @@ def get_fake_mask_params(): ...@@ -991,6 +1092,20 @@ def get_fake_mask_params():
mask_width=4) mask_width=4)
def get_fake_densepose_params():
"""Returns the fake DensePose estimation parameter namedtuple."""
return cnma.DensePoseParams(
class_id=1,
classification_loss=losses.WeightedSoftmaxClassificationLoss(),
localization_loss=losses.L1LocalizationLoss(),
part_loss_weight=1.0,
coordinate_loss_weight=1.0,
num_parts=_DENSEPOSE_NUM_PARTS,
task_loss_weight=1.0,
upsample_to_input_res=True,
upsample_method='nearest')
def build_center_net_meta_arch(build_resnet=False): def build_center_net_meta_arch(build_resnet=False):
"""Builds the CenterNet meta architecture.""" """Builds the CenterNet meta architecture."""
if build_resnet: if build_resnet:
...@@ -1018,7 +1133,8 @@ def build_center_net_meta_arch(build_resnet=False): ...@@ -1018,7 +1133,8 @@ def build_center_net_meta_arch(build_resnet=False):
object_center_params=get_fake_center_params(), object_center_params=get_fake_center_params(),
object_detection_params=get_fake_od_params(), object_detection_params=get_fake_od_params(),
keypoint_params_dict={_TASK_NAME: get_fake_kp_params()}, keypoint_params_dict={_TASK_NAME: get_fake_kp_params()},
mask_params=get_fake_mask_params()) mask_params=get_fake_mask_params(),
densepose_params=get_fake_densepose_params())
def _logit(p): def _logit(p):
...@@ -1102,6 +1218,16 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1102,6 +1218,16 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
fake_feature_map) fake_feature_map)
self.assertEqual((4, 128, 128, _NUM_CLASSES), output.shape) self.assertEqual((4, 128, 128, _NUM_CLASSES), output.shape)
# "densepose parts" head:
output = model._prediction_head_dict[cnma.DENSEPOSE_HEATMAP][-1](
fake_feature_map)
self.assertEqual((4, 128, 128, _DENSEPOSE_NUM_PARTS), output.shape)
# "densepose surface coordinates" head:
output = model._prediction_head_dict[cnma.DENSEPOSE_REGRESSION][-1](
fake_feature_map)
self.assertEqual((4, 128, 128, 2 * _DENSEPOSE_NUM_PARTS), output.shape)
def test_initialize_target_assigners(self): def test_initialize_target_assigners(self):
model = build_center_net_meta_arch() model = build_center_net_meta_arch()
assigner_dict = model._initialize_target_assigners( assigner_dict = model._initialize_target_assigners(
...@@ -1125,6 +1251,10 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1125,6 +1251,10 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
self.assertIsInstance(assigner_dict[cnma.SEGMENTATION_TASK], self.assertIsInstance(assigner_dict[cnma.SEGMENTATION_TASK],
cn_assigner.CenterNetMaskTargetAssigner) cn_assigner.CenterNetMaskTargetAssigner)
# DensePose estimation target assigner:
self.assertIsInstance(assigner_dict[cnma.DENSEPOSE_TASK],
cn_assigner.CenterNetDensePoseTargetAssigner)
def test_predict(self): def test_predict(self):
"""Test the predict function.""" """Test the predict function."""
...@@ -1145,6 +1275,10 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1145,6 +1275,10 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
(2, 32, 32, 2)) (2, 32, 32, 2))
self.assertEqual(prediction_dict[cnma.SEGMENTATION_HEATMAP][0].shape, self.assertEqual(prediction_dict[cnma.SEGMENTATION_HEATMAP][0].shape,
(2, 32, 32, _NUM_CLASSES)) (2, 32, 32, _NUM_CLASSES))
self.assertEqual(prediction_dict[cnma.DENSEPOSE_HEATMAP][0].shape,
(2, 32, 32, _DENSEPOSE_NUM_PARTS))
self.assertEqual(prediction_dict[cnma.DENSEPOSE_REGRESSION][0].shape,
(2, 32, 32, 2 * _DENSEPOSE_NUM_PARTS))
def test_loss(self): def test_loss(self):
"""Test the loss function.""" """Test the loss function."""
...@@ -1157,7 +1291,13 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1157,7 +1291,13 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
groundtruth_keypoints_list=groundtruth_dict[ groundtruth_keypoints_list=groundtruth_dict[
fields.BoxListFields.keypoints], fields.BoxListFields.keypoints],
groundtruth_masks_list=groundtruth_dict[ groundtruth_masks_list=groundtruth_dict[
fields.BoxListFields.masks]) fields.BoxListFields.masks],
groundtruth_dp_num_points_list=groundtruth_dict[
fields.BoxListFields.densepose_num_points],
groundtruth_dp_part_ids_list=groundtruth_dict[
fields.BoxListFields.densepose_part_ids],
groundtruth_dp_surface_coords_list=groundtruth_dict[
fields.BoxListFields.densepose_surface_coords])
prediction_dict = get_fake_prediction_dict( prediction_dict = get_fake_prediction_dict(
input_height=16, input_width=32, stride=4) input_height=16, input_width=32, stride=4)
...@@ -1193,6 +1333,12 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1193,6 +1333,12 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
self.assertGreater( self.assertGreater(
0.01, loss_dict['%s/%s' % (cnma.LOSS_KEY_PREFIX, 0.01, loss_dict['%s/%s' % (cnma.LOSS_KEY_PREFIX,
cnma.SEGMENTATION_HEATMAP)]) cnma.SEGMENTATION_HEATMAP)])
self.assertGreater(
0.01, loss_dict['%s/%s' % (cnma.LOSS_KEY_PREFIX,
cnma.DENSEPOSE_HEATMAP)])
self.assertGreater(
0.01, loss_dict['%s/%s' % (cnma.LOSS_KEY_PREFIX,
cnma.DENSEPOSE_REGRESSION)])
@parameterized.parameters( @parameterized.parameters(
{'target_class_id': 1}, {'target_class_id': 1},
...@@ -1230,6 +1376,14 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1230,6 +1376,14 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
segmentation_heatmap[:, 14:18, 14:18, target_class_id] = 1.0 segmentation_heatmap[:, 14:18, 14:18, target_class_id] = 1.0
segmentation_heatmap = _logit(segmentation_heatmap) segmentation_heatmap = _logit(segmentation_heatmap)
dp_part_ind = 4
dp_part_heatmap = np.zeros((1, 32, 32, _DENSEPOSE_NUM_PARTS),
dtype=np.float32)
dp_part_heatmap[0, 14:18, 14:18, dp_part_ind] = 1.0
dp_part_heatmap = _logit(dp_part_heatmap)
dp_surf_coords = np.random.randn(1, 32, 32, 2 * _DENSEPOSE_NUM_PARTS)
class_center = tf.constant(class_center) class_center = tf.constant(class_center)
height_width = tf.constant(height_width) height_width = tf.constant(height_width)
offset = tf.constant(offset) offset = tf.constant(offset)
...@@ -1237,6 +1391,8 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1237,6 +1391,8 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
keypoint_offsets = tf.constant(keypoint_offsets, dtype=tf.float32) keypoint_offsets = tf.constant(keypoint_offsets, dtype=tf.float32)
keypoint_regression = tf.constant(keypoint_regression, dtype=tf.float32) keypoint_regression = tf.constant(keypoint_regression, dtype=tf.float32)
segmentation_heatmap = tf.constant(segmentation_heatmap, dtype=tf.float32) segmentation_heatmap = tf.constant(segmentation_heatmap, dtype=tf.float32)
dp_part_heatmap = tf.constant(dp_part_heatmap, dtype=tf.float32)
dp_surf_coords = tf.constant(dp_surf_coords, dtype=tf.float32)
prediction_dict = { prediction_dict = {
cnma.OBJECT_CENTER: [class_center], cnma.OBJECT_CENTER: [class_center],
...@@ -1249,6 +1405,8 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1249,6 +1405,8 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
cnma.get_keypoint_name(_TASK_NAME, cnma.KEYPOINT_REGRESSION): cnma.get_keypoint_name(_TASK_NAME, cnma.KEYPOINT_REGRESSION):
[keypoint_regression], [keypoint_regression],
cnma.SEGMENTATION_HEATMAP: [segmentation_heatmap], cnma.SEGMENTATION_HEATMAP: [segmentation_heatmap],
cnma.DENSEPOSE_HEATMAP: [dp_part_heatmap],
cnma.DENSEPOSE_REGRESSION: [dp_surf_coords]
} }
def graph_fn(): def graph_fn():
...@@ -1271,12 +1429,13 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1271,12 +1429,13 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
self.assertAllEqual([1, max_detection, 4, 4], self.assertAllEqual([1, max_detection, 4, 4],
detections['detection_masks'].shape) detections['detection_masks'].shape)
# There should be some section of the first mask (correspond to the only # Masks should be empty for everything but the first detection.
# detection) with non-zero mask values.
self.assertGreater(np.sum(detections['detection_masks'][0, 0, :, :] > 0), 0)
self.assertAllEqual( self.assertAllEqual(
detections['detection_masks'][0, 1:, :, :], detections['detection_masks'][0, 1:, :, :],
np.zeros_like(detections['detection_masks'][0, 1:, :, :])) np.zeros_like(detections['detection_masks'][0, 1:, :, :]))
self.assertAllEqual(
detections['detection_surface_coords'][0, 1:, :, :],
np.zeros_like(detections['detection_surface_coords'][0, 1:, :, :]))
if target_class_id == 1: if target_class_id == 1:
expected_kpts_for_obj_0 = np.array( expected_kpts_for_obj_0 = np.array(
...@@ -1287,6 +1446,12 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1287,6 +1446,12 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
expected_kpts_for_obj_0, rtol=1e-6) expected_kpts_for_obj_0, rtol=1e-6)
np.testing.assert_allclose(detections['detection_keypoint_scores'][0][0], np.testing.assert_allclose(detections['detection_keypoint_scores'][0][0],
expected_kpt_scores_for_obj_0, rtol=1e-6) expected_kpt_scores_for_obj_0, rtol=1e-6)
# First detection has DensePose parts.
self.assertSameElements(
np.unique(detections['detection_masks'][0, 0, :, :]),
set([0, dp_part_ind + 1]))
self.assertGreater(np.sum(np.abs(detections['detection_surface_coords'])),
0.0)
else: else:
# All keypoint outputs should be zeros. # All keypoint outputs should be zeros.
np.testing.assert_allclose( np.testing.assert_allclose(
...@@ -1297,6 +1462,14 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase): ...@@ -1297,6 +1462,14 @@ class CenterNetMetaArchTest(test_case.TestCase, parameterized.TestCase):
detections['detection_keypoint_scores'][0][0], detections['detection_keypoint_scores'][0][0],
np.zeros([num_keypoints], np.float), np.zeros([num_keypoints], np.float),
rtol=1e-6) rtol=1e-6)
# Binary segmentation mask.
self.assertSameElements(
np.unique(detections['detection_masks'][0, 0, :, :]),
set([0, 1]))
# No DensePose surface coordinates.
np.testing.assert_allclose(
detections['detection_surface_coords'][0, 0, :, :],
np.zeros_like(detections['detection_surface_coords'][0, 0, :, :]))
def test_get_instance_indices(self): def test_get_instance_indices(self):
classes = tf.constant([[0, 1, 2, 0], [2, 1, 2, 2]], dtype=tf.int32) classes = tf.constant([[0, 1, 2, 0], [2, 1, 2, 2]], dtype=tf.int32)
...@@ -1353,6 +1526,17 @@ def get_fake_prediction_dict(input_height, input_width, stride): ...@@ -1353,6 +1526,17 @@ def get_fake_prediction_dict(input_height, input_width, stride):
mask_heatmap[0, 2, 4, 1] = 1.0 mask_heatmap[0, 2, 4, 1] = 1.0
mask_heatmap = _logit(mask_heatmap) mask_heatmap = _logit(mask_heatmap)
densepose_heatmap = np.zeros((2, output_height, output_width,
_DENSEPOSE_NUM_PARTS), dtype=np.float32)
densepose_heatmap[0, 2, 4, 5] = 1.0
densepose_heatmap = _logit(densepose_heatmap)
densepose_regression = np.zeros((2, output_height, output_width,
2 * _DENSEPOSE_NUM_PARTS), dtype=np.float32)
# The surface coordinate indices for part index 5 are:
# (5 * 2, 5 * 2 + 1), or (10, 11).
densepose_regression[0, 2, 4, 10:12] = 0.4, 0.7
prediction_dict = { prediction_dict = {
'preprocessed_inputs': 'preprocessed_inputs':
tf.zeros((2, input_height, input_width, 3)), tf.zeros((2, input_height, input_width, 3)),
...@@ -1383,6 +1567,14 @@ def get_fake_prediction_dict(input_height, input_width, stride): ...@@ -1383,6 +1567,14 @@ def get_fake_prediction_dict(input_height, input_width, stride):
cnma.SEGMENTATION_HEATMAP: [ cnma.SEGMENTATION_HEATMAP: [
tf.constant(mask_heatmap), tf.constant(mask_heatmap),
tf.constant(mask_heatmap) tf.constant(mask_heatmap)
],
cnma.DENSEPOSE_HEATMAP: [
tf.constant(densepose_heatmap),
tf.constant(densepose_heatmap),
],
cnma.DENSEPOSE_REGRESSION: [
tf.constant(densepose_regression),
tf.constant(densepose_regression),
] ]
} }
return prediction_dict return prediction_dict
...@@ -1427,12 +1619,30 @@ def get_fake_groundtruth_dict(input_height, input_width, stride): ...@@ -1427,12 +1619,30 @@ def get_fake_groundtruth_dict(input_height, input_width, stride):
tf.constant(mask), tf.constant(mask),
tf.zeros_like(mask), tf.zeros_like(mask),
] ]
densepose_num_points = [
tf.constant([1], dtype=tf.int32),
tf.constant([0], dtype=tf.int32),
]
densepose_part_ids = [
tf.constant([[5, 0, 0]], dtype=tf.int32),
tf.constant([[0, 0, 0]], dtype=tf.int32),
]
densepose_surface_coords_np = np.zeros((1, 3, 4), dtype=np.float32)
densepose_surface_coords_np[0, 0, :] = 0.55, 0.55, 0.4, 0.7
densepose_surface_coords = [
tf.constant(densepose_surface_coords_np),
tf.zeros_like(densepose_surface_coords_np)
]
groundtruth_dict = { groundtruth_dict = {
fields.BoxListFields.boxes: boxes, fields.BoxListFields.boxes: boxes,
fields.BoxListFields.weights: weights, fields.BoxListFields.weights: weights,
fields.BoxListFields.classes: classes, fields.BoxListFields.classes: classes,
fields.BoxListFields.keypoints: keypoints, fields.BoxListFields.keypoints: keypoints,
fields.BoxListFields.masks: masks, fields.BoxListFields.masks: masks,
fields.BoxListFields.densepose_num_points: densepose_num_points,
fields.BoxListFields.densepose_part_ids: densepose_part_ids,
fields.BoxListFields.densepose_surface_coords:
densepose_surface_coords,
fields.InputDataFields.groundtruth_labeled_classes: labeled_classes, fields.InputDataFields.groundtruth_labeled_classes: labeled_classes,
} }
return groundtruth_dict return groundtruth_dict
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment