eval_util.py 37.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
16
"""Common utility functions for evaluation."""
import collections
17
18
19
20
21
22
import os
import time

import numpy as np
import tensorflow as tf

23
24
25
26
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import keypoint_ops
from object_detection.core import standard_fields as fields
27
from object_detection.metrics import coco_evaluation
28
from object_detection.utils import label_map_util
29
from object_detection.utils import ops
30
from object_detection.utils import shape_utils
31
32
33
34
from object_detection.utils import visualization_utils as vis_utils

slim = tf.contrib.slim

35
36
37
38
39
40
41
42
43
44
45
46
# A dictionary of metric names to classes that implement the metric. The classes
# in the dictionary must implement
# utils.object_detection_evaluation.DetectionEvaluator interface.
EVAL_METRICS_CLASS_DICT = {
    'coco_detection_metrics':
        coco_evaluation.CocoDetectionEvaluator,
    'coco_mask_metrics':
        coco_evaluation.CocoMaskEvaluator,
}

EVAL_DEFAULT_METRIC = 'coco_detection_metrics'

47
48
49
50
51
52
53
54
55

def write_metrics(metrics, global_step, summary_dir):
  """Write metrics to a summary directory.

  Args:
    metrics: A dictionary containing metric names and values.
    global_step: Global step at which the metrics are computed.
    summary_dir: Directory to write tensorflow summaries to.
  """
56
  tf.logging.info('Writing metrics to tf summary.')
57
  summary_writer = tf.summary.FileWriterCache.get(summary_dir)
58
59
60
61
62
  for key in sorted(metrics):
    summary = tf.Summary(value=[
        tf.Summary.Value(tag=key, simple_value=metrics[key]),
    ])
    summary_writer.add_summary(summary, global_step)
63
64
    tf.logging.info('%s: %f', key, metrics[key])
  tf.logging.info('Metrics written to tf summary.')
65
66


67
# TODO(rathodv): Add tests.
68
69
70
71
72
73
74
75
def visualize_detection_results(result_dict,
                                tag,
                                global_step,
                                categories,
                                summary_dir='',
                                export_dir='',
                                agnostic_mode=False,
                                show_groundtruth=False,
76
                                groundtruth_box_visualization_color='black',
77
                                min_score_thresh=.5,
78
79
80
81
                                max_num_predictions=20,
                                skip_scores=False,
                                skip_labels=False,
                                keep_image_id_for_visualization_export=False):
82
83
84
85
86
87
88
89
90
91
92
93
  """Visualizes detection results and writes visualizations to image summaries.

  This function visualizes an image with its detected bounding boxes and writes
  to image summaries which can be viewed on tensorboard.  It optionally also
  writes images to a directory. In the case of missing entry in the label map,
  unknown class name in the visualization is shown as "N/A".

  Args:
    result_dict: a dictionary holding groundtruth and detection
      data corresponding to each image being evaluated.  The following keys
      are required:
        'original_image': a numpy array representing the image with shape
94
          [1, height, width, 3] or [1, height, width, 1]
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        'detection_boxes': a numpy array of shape [N, 4]
        'detection_scores': a numpy array of shape [N]
        'detection_classes': a numpy array of shape [N]
      The following keys are optional:
        'groundtruth_boxes': a numpy array of shape [N, 4]
        'groundtruth_keypoints': a numpy array of shape [N, num_keypoints, 2]
      Detections are assumed to be provided in decreasing order of score and for
      display, and we assume that scores are probabilities between 0 and 1.
    tag: tensorboard tag (string) to associate with image.
    global_step: global step at which the visualization are generated.
    categories: a list of dictionaries representing all possible categories.
      Each dict in this list has the following keys:
          'id': (required) an integer id uniquely identifying this category
          'name': (required) string representing category name
            e.g., 'cat', 'dog', 'pizza'
          'supercategory': (optional) string representing the supercategory
            e.g., 'animal', 'vehicle', 'food', etc
    summary_dir: the output directory to which the image summaries are written.
    export_dir: the output directory to which images are written.  If this is
      empty (default), then images are not exported.
    agnostic_mode: boolean (default: False) controlling whether to evaluate in
      class-agnostic mode or not.
    show_groundtruth: boolean (default: False) controlling whether to show
      groundtruth boxes in addition to detected boxes
119
120
    groundtruth_box_visualization_color: box color for visualizing groundtruth
      boxes
121
122
    min_score_thresh: minimum score threshold for a box to be visualized
    max_num_predictions: maximum number of detections to visualize
123
124
125
126
    skip_scores: whether to skip score when drawing a single detection
    skip_labels: whether to skip label when drawing a single detection
    keep_image_id_for_visualization_export: whether to keep image identifier in
      filename when exported to export_dir
127
128
129
130
131
  Raises:
    ValueError: if result_dict does not contain the expected keys (i.e.,
      'original_image', 'detection_boxes', 'detection_scores',
      'detection_classes')
  """
132
133
  detection_fields = fields.DetectionResultFields
  input_fields = fields.InputDataFields
134
  if not set([
135
136
137
138
      input_fields.original_image,
      detection_fields.detection_boxes,
      detection_fields.detection_scores,
      detection_fields.detection_classes,
139
140
  ]).issubset(set(result_dict.keys())):
    raise ValueError('result_dict does not contain all expected keys.')
141
  if show_groundtruth and input_fields.groundtruth_boxes not in result_dict:
142
143
    raise ValueError('If show_groundtruth is enabled, result_dict must contain '
                     'groundtruth_boxes.')
144
  tf.logging.info('Creating detection visualizations.')
145
146
  category_index = label_map_util.create_category_index(categories)

147
  image = np.squeeze(result_dict[input_fields.original_image], axis=0)
148
149
  if image.shape[2] == 1:  # If one channel image, repeat in RGB.
    image = np.tile(image, [1, 1, 3])
150
151
152
153
154
155
156
  detection_boxes = result_dict[detection_fields.detection_boxes]
  detection_scores = result_dict[detection_fields.detection_scores]
  detection_classes = np.int32((result_dict[
      detection_fields.detection_classes]))
  detection_keypoints = result_dict.get(detection_fields.detection_keypoints)
  detection_masks = result_dict.get(detection_fields.detection_masks)
  detection_boundaries = result_dict.get(detection_fields.detection_boundaries)
157
158
159

  # Plot groundtruth underneath detections
  if show_groundtruth:
160
161
    groundtruth_boxes = result_dict[input_fields.groundtruth_boxes]
    groundtruth_keypoints = result_dict.get(input_fields.groundtruth_keypoints)
162
    vis_utils.visualize_boxes_and_labels_on_image_array(
163
164
165
166
167
        image=image,
        boxes=groundtruth_boxes,
        classes=None,
        scores=None,
        category_index=category_index,
168
169
        keypoints=groundtruth_keypoints,
        use_normalized_coordinates=False,
170
171
        max_boxes_to_draw=None,
        groundtruth_box_visualization_color=groundtruth_box_visualization_color)
172
173
174
175
176
177
178
  vis_utils.visualize_boxes_and_labels_on_image_array(
      image,
      detection_boxes,
      detection_classes,
      detection_scores,
      category_index,
      instance_masks=detection_masks,
179
      instance_boundaries=detection_boundaries,
180
181
182
183
      keypoints=detection_keypoints,
      use_normalized_coordinates=False,
      max_boxes_to_draw=max_num_predictions,
      min_score_thresh=min_score_thresh,
184
185
186
      agnostic_mode=agnostic_mode,
      skip_scores=skip_scores,
      skip_labels=skip_labels)
187
188

  if export_dir:
189
190
191
192
193
194
195
    if keep_image_id_for_visualization_export and result_dict[fields.
                                                              InputDataFields()
                                                              .key]:
      export_path = os.path.join(export_dir, 'export-{}-{}.png'.format(
          tag, result_dict[fields.InputDataFields().key]))
    else:
      export_path = os.path.join(export_dir, 'export-{}.png'.format(tag))
196
197
198
    vis_utils.save_image_array_as_png(image, export_path)

  summary = tf.Summary(value=[
199
200
201
202
203
      tf.Summary.Value(
          tag=tag,
          image=tf.Summary.Image(
              encoded_image_string=vis_utils.encode_image_array_as_png_str(
                  image)))
204
  ])
205
  summary_writer = tf.summary.FileWriterCache.get(summary_dir)
206
207
  summary_writer.add_summary(summary, global_step)

208
209
  tf.logging.info('Detection visualizations written to summary with tag %s.',
                  tag)
210
211


212
213
214
215
216
217
218
219
220
def _run_checkpoint_once(tensor_dict,
                         evaluators=None,
                         batch_processor=None,
                         checkpoint_dirs=None,
                         variables_to_restore=None,
                         restore_fn=None,
                         num_batches=1,
                         master='',
                         save_graph=False,
221
                         save_graph_dir='',
222
223
                         losses_dict=None,
                         eval_export_path=None):
224
  """Evaluates metrics defined in evaluators and returns summaries.
225
226
227
228

  This function loads the latest checkpoint in checkpoint_dirs and evaluates
  all metrics defined in evaluators. The metrics are processed in batch by the
  batch_processor.
229
230
231
232

  Args:
    tensor_dict: a dictionary holding tensors representing a batch of detections
      and corresponding groundtruth annotations.
233
234
235
    evaluators: a list of object of type DetectionEvaluator to be used for
      evaluation. Note that the metric names produced by different evaluators
      must be unique.
236
237
238
239
240
241
242
243
244
245
246
    batch_processor: a function taking four arguments:
      1. tensor_dict: the same tensor_dict that is passed in as the first
        argument to this function.
      2. sess: a tensorflow session
      3. batch_index: an integer representing the index of the batch amongst
        all batches
      By default, batch_processor is None, which defaults to running:
        return sess.run(tensor_dict)
      To skip an image, it suffices to return an empty dictionary in place of
      result_dict.
    checkpoint_dirs: list of directories to load into an EnsembleModel. If it
247
248
      has only one directory, EnsembleModel will not be used --
        a DetectionModel
249
250
251
252
253
254
255
256
257
258
259
260
261
      will be instantiated directly. Not used if restore_fn is set.
    variables_to_restore: None, or a dictionary mapping variable names found in
      a checkpoint to model variables. The dictionary would normally be
      generated by creating a tf.train.ExponentialMovingAverage object and
      calling its variables_to_restore() method. Not used if restore_fn is set.
    restore_fn: None, or a function that takes a tf.Session object and correctly
      restores all necessary variables from the correct checkpoint file. If
      None, attempts to restore from the first directory in checkpoint_dirs.
    num_batches: the number of batches to use for evaluation.
    master: the location of the Tensorflow session.
    save_graph: whether or not the Tensorflow graph is stored as a pbtxt file.
    save_graph_dir: where to store the Tensorflow graph on disk. If save_graph
      is True this must be non-empty.
262
    losses_dict: optional dictionary of scalar detection losses.
263
264
    eval_export_path: Path for saving a json file that contains the detection
      results in json format.
265
266
267
268

  Returns:
    global_step: the count of global steps.
    all_evaluator_metrics: A dictionary containing metric names and values.
269
270
271
272
273
274
275
276
277
278
279

  Raises:
    ValueError: if restore_fn is None and checkpoint_dirs doesn't have at least
      one element.
    ValueError: if save_graph is True and save_graph_dir is not defined.
  """
  if save_graph and not save_graph_dir:
    raise ValueError('`save_graph_dir` must be defined.')
  sess = tf.Session(master, graph=tf.get_default_graph())
  sess.run(tf.global_variables_initializer())
  sess.run(tf.local_variables_initializer())
280
  sess.run(tf.tables_initializer())
281
282
283
284
285
286
287
288
289
290
291
292
293
  if restore_fn:
    restore_fn(sess)
  else:
    if not checkpoint_dirs:
      raise ValueError('`checkpoint_dirs` must have at least one entry.')
    checkpoint_file = tf.train.latest_checkpoint(checkpoint_dirs[0])
    saver = tf.train.Saver(variables_to_restore)
    saver.restore(sess, checkpoint_file)

  if save_graph:
    tf.train.write_graph(sess.graph_def, save_graph_dir, 'eval.pbtxt')

  counters = {'skipped': 0, 'success': 0}
294
  aggregate_result_losses_dict = collections.defaultdict(list)
295
296
297
298
  with tf.contrib.slim.queues.QueueRunners(sess):
    try:
      for batch in range(int(num_batches)):
        if (batch + 1) % 100 == 0:
299
300
          tf.logging.info('Running eval ops batch %d/%d', batch + 1,
                          num_batches)
301
302
        if not batch_processor:
          try:
303
304
305
306
            if not losses_dict:
              losses_dict = {}
            result_dict, result_losses_dict = sess.run([tensor_dict,
                                                        losses_dict])
307
308
            counters['success'] += 1
          except tf.errors.InvalidArgumentError:
309
            tf.logging.info('Skipping image')
310
311
312
            counters['skipped'] += 1
            result_dict = {}
        else:
313
314
          result_dict, result_losses_dict = batch_processor(
              tensor_dict, sess, batch, counters, losses_dict=losses_dict)
315
316
        if not result_dict:
          continue
317
318
        for key, value in iter(result_losses_dict.items()):
          aggregate_result_losses_dict[key].append(value)
319
        for evaluator in evaluators:
320
          # TODO(b/65130867): Use image_id tensor once we fix the input data
321
          # decoders to return correct image_id.
322
          # TODO(akuznetsa): result_dict contains batches of images, while
323
          # add_single_ground_truth_image_info expects a single image. Fix
324
          if (isinstance(result_dict, dict) and
325
              fields.InputDataFields.key in result_dict and
326
327
328
329
              result_dict[fields.InputDataFields.key]):
            image_id = result_dict[fields.InputDataFields.key]
          else:
            image_id = batch
330
          evaluator.add_single_ground_truth_image_info(
331
              image_id=image_id, groundtruth_dict=result_dict)
332
          evaluator.add_single_detected_image_info(
333
334
              image_id=image_id, detections_dict=result_dict)
      tf.logging.info('Running eval batches done.')
335
    except tf.errors.OutOfRangeError:
336
      tf.logging.info('Done evaluating -- epoch limit reached')
337
338
    finally:
      # When done, ask the threads to stop.
339
340
      tf.logging.info('# success: %d', counters['success'])
      tf.logging.info('# skipped: %d', counters['skipped'])
341
      all_evaluator_metrics = {}
342
343
344
345
346
347
348
349
      if eval_export_path and eval_export_path is not None:
        for evaluator in evaluators:
          if (isinstance(evaluator, coco_evaluation.CocoDetectionEvaluator) or
              isinstance(evaluator, coco_evaluation.CocoMaskEvaluator)):
            tf.logging.info('Started dumping to json file.')
            evaluator.dump_detections_to_json_file(
                json_output_path=eval_export_path)
            tf.logging.info('Finished dumping to json file.')
350
351
352
353
354
355
356
      for evaluator in evaluators:
        metrics = evaluator.evaluate()
        evaluator.clear()
        if any(key in all_evaluator_metrics for key in metrics):
          raise ValueError('Metric names between evaluators must not collide.')
        all_evaluator_metrics.update(metrics)
      global_step = tf.train.global_step(sess, tf.train.get_global_step())
357
358
359

      for key, value in iter(aggregate_result_losses_dict.items()):
        all_evaluator_metrics['Losses/' + key] = np.mean(value)
360
  sess.close()
361
  return (global_step, all_evaluator_metrics)
362
363


364
# TODO(rathodv): Add tests.
365
366
def repeated_checkpoint_run(tensor_dict,
                            summary_dir,
367
                            evaluators,
368
369
370
371
372
373
374
375
376
                            batch_processor=None,
                            checkpoint_dirs=None,
                            variables_to_restore=None,
                            restore_fn=None,
                            num_batches=1,
                            eval_interval_secs=120,
                            max_number_of_evaluations=None,
                            master='',
                            save_graph=False,
377
                            save_graph_dir='',
378
379
                            losses_dict=None,
                            eval_export_path=None):
380
381
382
383
384
385
386
387
388
389
390
  """Periodically evaluates desired tensors using checkpoint_dirs or restore_fn.

  This function repeatedly loads a checkpoint and evaluates a desired
  set of tensors (provided by tensor_dict) and hands the resulting numpy
  arrays to a function result_processor which can be used to further
  process/save/visualize the results.

  Args:
    tensor_dict: a dictionary holding tensors representing a batch of detections
      and corresponding groundtruth annotations.
    summary_dir: a directory to write metrics summaries.
391
392
393
    evaluators: a list of object of type DetectionEvaluator to be used for
      evaluation. Note that the metric names produced by different evaluators
      must be unique.
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    batch_processor: a function taking three arguments:
      1. tensor_dict: the same tensor_dict that is passed in as the first
        argument to this function.
      2. sess: a tensorflow session
      3. batch_index: an integer representing the index of the batch amongst
        all batches
      By default, batch_processor is None, which defaults to running:
        return sess.run(tensor_dict)
    checkpoint_dirs: list of directories to load into a DetectionModel or an
      EnsembleModel if restore_fn isn't set. Also used to determine when to run
      next evaluation. Must have at least one element.
    variables_to_restore: None, or a dictionary mapping variable names found in
      a checkpoint to model variables. The dictionary would normally be
      generated by creating a tf.train.ExponentialMovingAverage object and
      calling its variables_to_restore() method. Not used if restore_fn is set.
    restore_fn: a function that takes a tf.Session object and correctly restores
      all necessary variables from the correct checkpoint file.
    num_batches: the number of batches to use for evaluation.
    eval_interval_secs: the number of seconds between each evaluation run.
    max_number_of_evaluations: the max number of iterations of the evaluation.
      If the value is left as None the evaluation continues indefinitely.
    master: the location of the Tensorflow session.
    save_graph: whether or not the Tensorflow graph is saved as a pbtxt file.
    save_graph_dir: where to save on disk the Tensorflow graph. If store_graph
      is True this must be non-empty.
419
    losses_dict: optional dictionary of scalar detection losses.
420
421
    eval_export_path: Path for saving a json file that contains the detection
      results in json format.
422
423
424
425

  Returns:
    metrics: A dictionary containing metric names and values in the latest
      evaluation.
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

  Raises:
    ValueError: if max_num_of_evaluations is not None or a positive number.
    ValueError: if checkpoint_dirs doesn't have at least one element.
  """
  if max_number_of_evaluations and max_number_of_evaluations <= 0:
    raise ValueError(
        '`number_of_steps` must be either None or a positive number.')

  if not checkpoint_dirs:
    raise ValueError('`checkpoint_dirs` must have at least one entry.')

  last_evaluated_model_path = None
  number_of_evaluations = 0
  while True:
    start = time.time()
442
    tf.logging.info('Starting evaluation at ' + time.strftime(
443
        '%Y-%m-%d-%H:%M:%S', time.gmtime()))
444
445
    model_path = tf.train.latest_checkpoint(checkpoint_dirs[0])
    if not model_path:
446
447
      tf.logging.info('No model found in %s. Will try again in %d seconds',
                      checkpoint_dirs[0], eval_interval_secs)
448
    elif model_path == last_evaluated_model_path:
449
450
      tf.logging.info('Found already evaluated checkpoint. Will try again in '
                      '%d seconds', eval_interval_secs)
451
452
    else:
      last_evaluated_model_path = model_path
453
454
455
456
457
458
459
460
461
462
463
464
465
      global_step, metrics = _run_checkpoint_once(
          tensor_dict,
          evaluators,
          batch_processor,
          checkpoint_dirs,
          variables_to_restore,
          restore_fn,
          num_batches,
          master,
          save_graph,
          save_graph_dir,
          losses_dict=losses_dict,
          eval_export_path=eval_export_path)
466
      write_metrics(metrics, global_step, summary_dir)
467
468
469
470
    number_of_evaluations += 1

    if (max_number_of_evaluations and
        number_of_evaluations >= max_number_of_evaluations):
471
      tf.logging.info('Finished evaluation!')
472
473
474
475
      break
    time_to_next_eval = start + eval_interval_secs - time.time()
    if time_to_next_eval > 0:
      time.sleep(time_to_next_eval)
476
477
478
479

  return metrics


480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
def _scale_box_to_absolute(args):
  boxes, image_shape = args
  return box_list_ops.to_absolute_coordinates(
      box_list.BoxList(boxes), image_shape[0], image_shape[1]).get()


def _resize_detection_masks(args):
  detection_boxes, detection_masks, image_shape = args
  detection_masks_reframed = ops.reframe_box_masks_to_image_masks(
      detection_masks, detection_boxes, image_shape[0], image_shape[1])
  return tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)


def _resize_groundtruth_masks(args):
  mask, image_shape = args
  mask = tf.expand_dims(mask, 3)
  mask = tf.image.resize_images(
      mask,
      image_shape,
      method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
      align_corners=True)
  return tf.cast(tf.squeeze(mask, 3), tf.uint8)


def _scale_keypoint_to_absolute(args):
  keypoints, image_shape = args
  return keypoint_ops.scale(keypoints, image_shape[0], image_shape[1])


509
510
511
512
513
514
515
516
517
518
519
520
521
def result_dict_for_single_example(image,
                                   key,
                                   detections,
                                   groundtruth=None,
                                   class_agnostic=False,
                                   scale_to_absolute=False):
  """Merges all detection and groundtruth information for a single example.

  Note that evaluation tools require classes that are 1-indexed, and so this
  function performs the offset. If `class_agnostic` is True, all output classes
  have label 1.

  Args:
522
    image: A single 4D uint8 image tensor of shape [1, H, W, C].
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    key: A single string tensor identifying the image.
    detections: A dictionary of detections, returned from
      DetectionModel.postprocess().
    groundtruth: (Optional) Dictionary of groundtruth items, with fields:
      'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
        normalized coordinates.
      'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional)
      'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional)
      'groundtruth_difficult': [num_boxes] int64 tensor. (Optional)
      'groundtruth_group_of': [num_boxes] int64 tensor. (Optional)
      'groundtruth_instance_masks': 3D int64 tensor of instance masks
        (Optional).
    class_agnostic: Boolean indicating whether the detections are class-agnostic
      (i.e. binary). Default False.
538
539
540
    scale_to_absolute: Boolean indicating whether boxes and keypoints should be
      scaled to absolute coordinates. Note that for IoU based evaluations, it
      does not matter whether boxes are expressed in absolute or relative
541
542
543
544
545
546
547
548
549
550
551
      coordinates. Default False.

  Returns:
    A dictionary with:
    'original_image': A [1, H, W, C] uint8 image tensor.
    'key': A string tensor with image identifier.
    'detection_boxes': [max_detections, 4] float32 tensor of boxes, in
      normalized or absolute coordinates, depending on the value of
      `scale_to_absolute`.
    'detection_scores': [max_detections] float32 tensor of scores.
    'detection_classes': [max_detections] int64 tensor of 1-indexed classes.
552
553
    'detection_masks': [max_detections, H, W] float32 tensor of binarized
      masks, reframed to full image masks.
554
555
556
557
558
559
560
561
562
563
564
565
566
    'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
      normalized or absolute coordinates, depending on the value of
      `scale_to_absolute`. (Optional)
    'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
      (Optional)
    'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional)
    'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional)
    'groundtruth_difficult': [num_boxes] int64 tensor. (Optional)
    'groundtruth_group_of': [num_boxes] int64 tensor. (Optional)
    'groundtruth_instance_masks': 3D int64 tensor of instance masks
      (Optional).

  """
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

  if groundtruth:
    max_gt_boxes = tf.shape(
        groundtruth[fields.InputDataFields.groundtruth_boxes])[0]
    for gt_key in groundtruth:
      # expand groundtruth dict along the batch dimension.
      groundtruth[gt_key] = tf.expand_dims(groundtruth[gt_key], 0)

  for detection_key in detections:
    detections[detection_key] = tf.expand_dims(
        detections[detection_key][0], axis=0)

  batched_output_dict = result_dict_for_batched_example(
      image,
      tf.expand_dims(key, 0),
      detections,
      groundtruth,
      class_agnostic,
      scale_to_absolute,
      max_gt_boxes=max_gt_boxes)

  exclude_keys = [
      fields.InputDataFields.original_image,
      fields.DetectionResultFields.num_detections,
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.original_image_spatial_shape
  ]

  output_dict = {
      fields.InputDataFields.original_image:
          batched_output_dict[fields.InputDataFields.original_image]
  }

  for key in batched_output_dict:
    # remove the batch dimension.
    if key not in exclude_keys:
      output_dict[key] = tf.squeeze(batched_output_dict[key], 0)
  return output_dict


def result_dict_for_batched_example(images,
                                    keys,
                                    detections,
                                    groundtruth=None,
                                    class_agnostic=False,
                                    scale_to_absolute=False,
                                    original_image_spatial_shapes=None,
                                    max_gt_boxes=None):
  """Merges all detection and groundtruth information for a single example.

  Note that evaluation tools require classes that are 1-indexed, and so this
  function performs the offset. If `class_agnostic` is True, all output classes
  have label 1.

  Args:
    images: A single 4D uint8 image tensor of shape [batch_size, H, W, C].
    keys: A [batch_size] string tensor with image identifier.
    detections: A dictionary of detections, returned from
      DetectionModel.postprocess().
    groundtruth: (Optional) Dictionary of groundtruth items, with fields:
      'groundtruth_boxes': [batch_size, max_number_of_boxes, 4] float32 tensor
        of boxes, in normalized coordinates.
      'groundtruth_classes':  [batch_size, max_number_of_boxes] int64 tensor of
        1-indexed classes.
      'groundtruth_area': [batch_size, max_number_of_boxes] float32 tensor of
        bbox area. (Optional)
      'groundtruth_is_crowd':[batch_size, max_number_of_boxes] int64
        tensor. (Optional)
      'groundtruth_difficult': [batch_size, max_number_of_boxes] int64
        tensor. (Optional)
      'groundtruth_group_of': [batch_size, max_number_of_boxes] int64
        tensor. (Optional)
      'groundtruth_instance_masks': 4D int64 tensor of instance
        masks (Optional).
    class_agnostic: Boolean indicating whether the detections are class-agnostic
      (i.e. binary). Default False.
    scale_to_absolute: Boolean indicating whether boxes and keypoints should be
      scaled to absolute coordinates. Note that for IoU based evaluations, it
      does not matter whether boxes are expressed in absolute or relative
      coordinates. Default False.
    original_image_spatial_shapes: A 2D int32 tensor of shape [batch_size, 2]
      used to resize the image. When set to None, the image size is retained.
    max_gt_boxes: [batch_size] tensor representing the maximum number of
      groundtruth boxes to pad.

  Returns:
    A dictionary with:
    'original_image': A [batch_size, H, W, C] uint8 image tensor.
    'original_image_spatial_shape': A [batch_size, 2] tensor containing the
      original image sizes.
    'key': A [batch_size] string tensor with image identifier.
    'detection_boxes': [batch_size, max_detections, 4] float32 tensor of boxes,
      in normalized or absolute coordinates, depending on the value of
      `scale_to_absolute`.
    'detection_scores': [batch_size, max_detections] float32 tensor of scores.
    'detection_classes': [batch_size, max_detections] int64 tensor of 1-indexed
      classes.
    'detection_masks': [batch_size, max_detections, H, W] float32 tensor of
      binarized masks, reframed to full image masks.
    'num_detections': [batch_size] int64 tensor containing number of valid
      detections.
    'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in
      normalized or absolute coordinates, depending on the value of
      `scale_to_absolute`. (Optional)
    'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
      classes. (Optional)
    'groundtruth_area': [batch_size, num_boxes] float32 tensor of bbox
      area. (Optional)
    'groundtruth_is_crowd': [batch_size, num_boxes] int64 tensor. (Optional)
    'groundtruth_difficult': [batch_size, num_boxes] int64 tensor. (Optional)
    'groundtruth_group_of': [batch_size, num_boxes] int64 tensor. (Optional)
    'groundtruth_instance_masks': 4D int64 tensor of instance masks
      (Optional).
    'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
      of groundtruth boxes per image.

  Raises:
    ValueError: if original_image_spatial_shape is not 1D int32 tensor of shape
    [2].
  """
687
688
  label_id_offset = 1  # Applying label id offset (b/63711816)

689
  input_data_fields = fields.InputDataFields
690
691
692
693
694
695
696
697
698
699
700
  if original_image_spatial_shapes is None:
    original_image_spatial_shapes = tf.tile(
        tf.expand_dims(tf.shape(images)[1:3], axis=0),
        multiples=[tf.shape(images)[0], 1])
  else:
    if (len(original_image_spatial_shapes.shape) != 2 and
        original_image_spatial_shapes.shape[1] != 2):
      raise ValueError(
          '`original_image_spatial_shape` should be a 2D tensor of shape '
          '[batch_size, 2].')

701
  output_dict = {
702
703
704
705
      input_data_fields.original_image: images,
      input_data_fields.key: keys,
      input_data_fields.original_image_spatial_shape: (
          original_image_spatial_shapes)
706
707
708
  }

  detection_fields = fields.DetectionResultFields
709
710
711
  detection_boxes = detections[detection_fields.detection_boxes]
  detection_scores = detections[detection_fields.detection_scores]
  num_detections = tf.to_int32(detections[detection_fields.num_detections])
712
713
714
715
716

  if class_agnostic:
    detection_classes = tf.ones_like(detection_scores, dtype=tf.int64)
  else:
    detection_classes = (
717
        tf.to_int64(detections[detection_fields.detection_classes]) +
718
        label_id_offset)
719

720
721
  if scale_to_absolute:
    output_dict[detection_fields.detection_boxes] = (
722
723
724
725
        shape_utils.static_or_dynamic_map_fn(
            _scale_box_to_absolute,
            elems=[detection_boxes, original_image_spatial_shapes],
            dtype=tf.float32))
726
727
  else:
    output_dict[detection_fields.detection_boxes] = detection_boxes
728
  output_dict[detection_fields.detection_classes] = detection_classes
729
  output_dict[detection_fields.detection_scores] = detection_scores
730
  output_dict[detection_fields.num_detections] = num_detections
731
732

  if detection_fields.detection_masks in detections:
733
    detection_masks = detections[detection_fields.detection_masks]
734
    # TODO(rathodv): This should be done in model's postprocess
735
    # function ideally.
736
737
738
739
740
741
742
    output_dict[detection_fields.detection_masks] = (
        shape_utils.static_or_dynamic_map_fn(
            _resize_detection_masks,
            elems=[detection_boxes, detection_masks,
                   original_image_spatial_shapes],
            dtype=tf.uint8))

743
  if detection_fields.detection_keypoints in detections:
744
    detection_keypoints = detections[detection_fields.detection_keypoints]
745
746
747
    output_dict[detection_fields.detection_keypoints] = detection_keypoints
    if scale_to_absolute:
      output_dict[detection_fields.detection_keypoints] = (
748
749
750
751
          shape_utils.static_or_dynamic_map_fn(
              _scale_keypoint_to_absolute,
              elems=[detection_keypoints, original_image_spatial_shapes],
              dtype=tf.float32))
752
753

  if groundtruth:
754
755
756
757
758
759
760
    if max_gt_boxes is None:
      if input_data_fields.num_groundtruth_boxes in groundtruth:
        max_gt_boxes = groundtruth[input_data_fields.num_groundtruth_boxes]
      else:
        raise ValueError(
            'max_gt_boxes must be provided when processing batched examples.')

761
    if input_data_fields.groundtruth_instance_masks in groundtruth:
762
      masks = groundtruth[input_data_fields.groundtruth_instance_masks]
763
764
765
766
767
768
      groundtruth[input_data_fields.groundtruth_instance_masks] = (
          shape_utils.static_or_dynamic_map_fn(
              _resize_groundtruth_masks,
              elems=[masks, original_image_spatial_shapes],
              dtype=tf.uint8))

769
770
771
772
    output_dict.update(groundtruth)
    if scale_to_absolute:
      groundtruth_boxes = groundtruth[input_data_fields.groundtruth_boxes]
      output_dict[input_data_fields.groundtruth_boxes] = (
773
774
775
776
777
          shape_utils.static_or_dynamic_map_fn(
              _scale_box_to_absolute,
              elems=[groundtruth_boxes, original_image_spatial_shapes],
              dtype=tf.float32))

778
779
780
781
782
783
    # For class-agnostic models, groundtruth classes all become 1.
    if class_agnostic:
      groundtruth_classes = groundtruth[input_data_fields.groundtruth_classes]
      groundtruth_classes = tf.ones_like(groundtruth_classes, dtype=tf.int64)
      output_dict[input_data_fields.groundtruth_classes] = groundtruth_classes

784
785
    output_dict[input_data_fields.num_groundtruth_boxes] = max_gt_boxes

786
  return output_dict
787
788


789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
def get_evaluators(eval_config, categories, evaluator_options=None):
  """Returns the evaluator class according to eval_config, valid for categories.

  Args:
    eval_config: An `eval_pb2.EvalConfig`.
    categories: A list of dicts, each of which has the following keys -
        'id': (required) an integer id uniquely identifying this category.
        'name': (required) string representing category name e.g., 'cat', 'dog'.
    evaluator_options: A dictionary of metric names (see
      EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization
      keyword arguments. For example:
      evalator_options = {
        'coco_detection_metrics': {'include_metrics_per_category': True}
      }

  Returns:
    An list of instances of DetectionEvaluator.

  Raises:
    ValueError: if metric is not in the metric class dictionary.
  """
  evaluator_options = evaluator_options or {}
  eval_metric_fn_keys = eval_config.metrics_set
  if not eval_metric_fn_keys:
    eval_metric_fn_keys = [EVAL_DEFAULT_METRIC]
  evaluators_list = []
  for eval_metric_fn_key in eval_metric_fn_keys:
    if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT:
      raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))
    kwargs_dict = (evaluator_options[eval_metric_fn_key] if eval_metric_fn_key
                   in evaluator_options else {})
    evaluators_list.append(EVAL_METRICS_CLASS_DICT[eval_metric_fn_key](
        categories,
        **kwargs_dict))
  return evaluators_list


def get_eval_metric_ops_for_evaluators(eval_config,
827
                                       categories,
828
829
                                       eval_dict):
  """Returns eval metrics ops to use with `tf.estimator.EstimatorSpec`.
830
831

  Args:
832
    eval_config: An `eval_pb2.EvalConfig`.
833
834
835
836
837
838
839
840
841
842
843
    categories: A list of dicts, each of which has the following keys -
        'id': (required) an integer id uniquely identifying this category.
        'name': (required) string representing category name e.g., 'cat', 'dog'.
    eval_dict: An evaluation dictionary, returned from
      result_dict_for_single_example().

  Returns:
    A dictionary of metric names to tuple of value_op and update_op that can be
    used as eval metric ops in tf.EstimatorSpec.
  """
  eval_metric_ops = {}
844
845
846
847
848
  evaluator_options = evaluator_options_from_eval_config(eval_config)
  evaluators_list = get_evaluators(eval_config, categories, evaluator_options)
  for evaluator in evaluators_list:
    eval_metric_ops.update(evaluator.get_estimator_eval_metric_ops(
        eval_dict))
849
  return eval_metric_ops
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874


def evaluator_options_from_eval_config(eval_config):
  """Produces a dictionary of evaluation options for each eval metric.

  Args:
    eval_config: An `eval_pb2.EvalConfig`.

  Returns:
    evaluator_options: A dictionary of metric names (see
      EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization
      keyword arguments. For example:
      evalator_options = {
        'coco_detection_metrics': {'include_metrics_per_category': True}
      }
  """
  eval_metric_fn_keys = eval_config.metrics_set
  evaluator_options = {}
  for eval_metric_fn_key in eval_metric_fn_keys:
    if eval_metric_fn_key in ('coco_detection_metrics', 'coco_mask_metrics'):
      evaluator_options[eval_metric_fn_key] = {
          'include_metrics_per_category': (
              eval_config.include_metrics_per_category)
      }
  return evaluator_options