inputs.py 46.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model input function for tf-learn object detection model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools

23
import tensorflow.compat.v1 as tf
24
from object_detection.builders import dataset_builder
25
26
from object_detection.builders import image_resizer_builder
from object_detection.builders import model_builder
27
from object_detection.builders import preprocessor_builder
28
29
30
from object_detection.core import box_list
from object_detection.core import box_list_ops
from object_detection.core import keypoint_ops
31
from object_detection.core import preprocessor
32
33
34
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
from object_detection.protos import eval_pb2
35
from object_detection.protos import image_resizer_pb2
36
from object_detection.protos import input_reader_pb2
37
from object_detection.protos import model_pb2
38
from object_detection.protos import train_pb2
39
from object_detection.utils import config_util
40
from object_detection.utils import ops as util_ops
41
from object_detection.utils import shape_utils
42

43
44
HASH_KEY = 'hash'
HASH_BINS = 1 << 31
45
SERVING_FED_EXAMPLE_KEY = 'serialized_example'
46
_LABEL_OFFSET = 1
47

48
49
50
# A map of names to methods that help build the input pipeline.
INPUT_BUILDER_UTIL_MAP = {
    'dataset_build': dataset_builder.build,
51
    'model_build': model_builder.build,
52
53
}

54

pkulzc's avatar
pkulzc committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def _multiclass_scores_or_one_hot_labels(multiclass_scores,
                                         groundtruth_boxes,
                                         groundtruth_classes, num_classes):
  """Returns one-hot encoding of classes when multiclass_scores is empty."""
  # Replace groundtruth_classes tensor with multiclass_scores tensor when its
  # non-empty. If multiclass_scores is empty fall back on groundtruth_classes
  # tensor.
  def true_fn():
    return tf.reshape(multiclass_scores,
                      [tf.shape(groundtruth_boxes)[0], num_classes])
  def false_fn():
    return tf.one_hot(groundtruth_classes, num_classes)
  return tf.cond(tf.size(multiclass_scores) > 0, true_fn, false_fn)


70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def _convert_labeled_classes_to_k_hot(groundtruth_labeled_classes, num_classes):
  """Returns k-hot encoding of the labeled classes."""

  # If the input labeled_classes is empty, it assumes all classes are
  # exhaustively labeled, thus returning an all-one encoding.
  def true_fn():
    return tf.sparse_to_dense(
        groundtruth_labeled_classes - _LABEL_OFFSET, [num_classes],
        tf.constant(1, dtype=tf.float32),
        validate_indices=False)

  def false_fn():
    return tf.ones(num_classes, dtype=tf.float32)

  return tf.cond(tf.size(groundtruth_labeled_classes) > 0, true_fn, false_fn)


def _remove_unrecognized_classes(class_ids, unrecognized_label):
  """Returns class ids with unrecognized classes filtered out."""

  recognized_indices = tf.where(tf.greater(class_ids, unrecognized_label))
  return tf.gather(class_ids, recognized_indices)


def assert_or_prune_invalid_boxes(boxes):
  """Makes sure boxes have valid sizes (ymax >= ymin, xmax >= xmin).

  When the hardware supports assertions, the function raises an error when
  boxes have an invalid size. If assertions are not supported (e.g. on TPU),
  boxes with invalid sizes are filtered out.

  Args:
    boxes: float tensor of shape [num_boxes, 4]

  Returns:
    boxes: float tensor of shape [num_valid_boxes, 4] with invalid boxes
      filtered out.

  Raises:
    tf.errors.InvalidArgumentError: When we detect boxes with invalid size.
      This is not supported on TPUs.
  """

  ymin, xmin, ymax, xmax = tf.split(
      boxes, num_or_size_splits=4, axis=1)

  height_check = tf.Assert(tf.reduce_all(ymax >= ymin), [ymin, ymax])
  width_check = tf.Assert(tf.reduce_all(xmax >= xmin), [xmin, xmax])

  with tf.control_dependencies([height_check, width_check]):
    boxes_tensor = tf.concat([ymin, xmin, ymax, xmax], axis=1)
    boxlist = box_list.BoxList(boxes_tensor)
    # TODO(b/149221748) Remove pruning when XLA supports assertions.
    boxlist = box_list_ops.prune_small_boxes(boxlist, 0)

  return boxlist.get()


128
129
130
131
132
133
def transform_input_data(tensor_dict,
                         model_preprocess_fn,
                         image_resizer_fn,
                         num_classes,
                         data_augmentation_fn=None,
                         merge_multiple_boxes=False,
134
                         retain_original_image=False,
135
                         use_multiclass_scores=False,
136
                         use_bfloat16=False,
137
138
                         retain_original_image_additional_channels=False,
                         keypoint_type_weight=None):
139
140
141
  """A single function that is responsible for all input data transformations.

  Data transformation functions are applied in the following order.
142
143
144
145
146
  1. If key fields.InputDataFields.image_additional_channels is present in
     tensor_dict, the additional channels will be merged into
     fields.InputDataFields.image.
  2. data_augmentation_fn (optional): applied on tensor_dict.
  3. model_preprocess_fn: applied only on image tensor in tensor_dict.
147
148
149
150
151
152
  4. keypoint_type_weight (optional): If groundtruth keypoints are in
     the tensor dictionary, per-keypoint weights are produced. These weights are
     initialized by `keypoint_type_weight` (or ones if left None).
     Then, for all keypoints that are not visible, the weights are set to 0 (to
     avoid penalizing the model in a loss function).
  5. image_resizer_fn: applied on original image and instance mask tensor in
153
     tensor_dict.
154
155
  6. one_hot_encoding: applied to classes tensor in tensor_dict.
  7. merge_multiple_boxes (optional): when groundtruth boxes are exactly the
156
157
158
159
160
161
162
163
164
     same they can be merged into a single box with an associated k-hot class
     label.

  Args:
    tensor_dict: dictionary containing input tensors keyed by
      fields.InputDataFields.
    model_preprocess_fn: model's preprocess function to apply on image tensor.
      This function must take in a 4-D float tensor and return a 4-D preprocess
      float tensor and a tensor containing the true image shape.
165
166
167
168
    image_resizer_fn: image resizer function to apply on groundtruth instance
      `masks. This function must take a 3-D float tensor of an image and a 3-D
      tensor of instance masks and return a resized version of these along with
      the true shapes.
169
170
171
172
173
174
175
176
    num_classes: number of max classes to one-hot (or k-hot) encode the class
      labels.
    data_augmentation_fn: (optional) data augmentation function to apply on
      input `tensor_dict`.
    merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes
      and classes for a given image if the boxes are exactly the same.
    retain_original_image: (optional) whether to retain original image in the
      output dictionary.
pkulzc's avatar
pkulzc committed
177
178
179
180
    use_multiclass_scores: whether to use multiclass scores as class targets
      instead of one-hot encoding of `groundtruth_classes`. When
      this is True and multiclass_scores is empty, one-hot encoding of
      `groundtruth_classes` is used as a fallback.
181
    use_bfloat16: (optional) a bool, whether to use bfloat16 in training.
182
183
    retain_original_image_additional_channels: (optional) Whether to retain
      original image additional channels in the output dictionary.
184
185
186
    keypoint_type_weight: A list (of length num_keypoints) containing
      groundtruth loss weights to use for each keypoint. If None, will use a
      weight of 1.
187
188
189
190

  Returns:
    A dictionary keyed by fields.InputDataFields containing the tensors obtained
    after applying all the transformations.
191
192
193
194
195

  Raises:
    KeyError: If both groundtruth_labeled_classes and groundtruth_image_classes
      are provided by the decoder in tensor_dict since both fields are
      considered to contain the same information.
196
  """
pkulzc's avatar
pkulzc committed
197
  out_tensor_dict = tensor_dict.copy()
198
199

  labeled_classes_field = fields.InputDataFields.groundtruth_labeled_classes
200
201
202
203
204
205
  image_classes_field = fields.InputDataFields.groundtruth_image_classes
  if (labeled_classes_field in out_tensor_dict and
      image_classes_field in out_tensor_dict):
    raise KeyError('groundtruth_labeled_classes and groundtruth_image_classes'
                   'are provided by the decoder, but only one should be set.')

206
207
208
209
210
211
212
213
  if labeled_classes_field in out_tensor_dict:
    # tf_example_decoder casts unrecognized labels to -1. Remove these
    # unrecognized labels before converting labeled_classes to k-hot vector.
    out_tensor_dict[labeled_classes_field] = _remove_unrecognized_classes(
        out_tensor_dict[labeled_classes_field], unrecognized_label=-1)
    out_tensor_dict[labeled_classes_field] = _convert_labeled_classes_to_k_hot(
        out_tensor_dict[labeled_classes_field], num_classes)

214
215
216
217
  if image_classes_field in out_tensor_dict:
    out_tensor_dict[labeled_classes_field] = _convert_labeled_classes_to_k_hot(
        out_tensor_dict[image_classes_field], num_classes)

pkulzc's avatar
pkulzc committed
218
219
220
221
222
223
224
225
226
227
228
229
230
  if fields.InputDataFields.multiclass_scores in out_tensor_dict:
    out_tensor_dict[
        fields.InputDataFields
        .multiclass_scores] = _multiclass_scores_or_one_hot_labels(
            out_tensor_dict[fields.InputDataFields.multiclass_scores],
            out_tensor_dict[fields.InputDataFields.groundtruth_boxes],
            out_tensor_dict[fields.InputDataFields.groundtruth_classes],
            num_classes)

  if fields.InputDataFields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates(
        out_tensor_dict)
    out_tensor_dict = util_ops.filter_unrecognized_classes(out_tensor_dict)
231

232
  if retain_original_image:
pkulzc's avatar
pkulzc committed
233
234
235
    out_tensor_dict[fields.InputDataFields.original_image] = tf.cast(
        image_resizer_fn(out_tensor_dict[fields.InputDataFields.image],
                         None)[0], tf.uint8)
236

pkulzc's avatar
pkulzc committed
237
238
239
240
  if fields.InputDataFields.image_additional_channels in out_tensor_dict:
    channels = out_tensor_dict[fields.InputDataFields.image_additional_channels]
    out_tensor_dict[fields.InputDataFields.image] = tf.concat(
        [out_tensor_dict[fields.InputDataFields.image], channels], axis=2)
241
242
243
244
    if retain_original_image_additional_channels:
      out_tensor_dict[
          fields.InputDataFields.image_additional_channels] = tf.cast(
              image_resizer_fn(channels, None)[0], tf.uint8)
245

246
247
  # Apply data augmentation ops.
  if data_augmentation_fn is not None:
pkulzc's avatar
pkulzc committed
248
    out_tensor_dict = data_augmentation_fn(out_tensor_dict)
249
250

  # Apply model preprocessing ops and resize instance masks.
pkulzc's avatar
pkulzc committed
251
  image = out_tensor_dict[fields.InputDataFields.image]
252
  preprocessed_resized_image, true_image_shape = model_preprocess_fn(
253
      tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0))
254
255
256
257
258
259
260
261
262
263
264
265
266
267

  preprocessed_shape = tf.shape(preprocessed_resized_image)
  new_height, new_width = preprocessed_shape[1], preprocessed_shape[2]

  im_box = tf.stack([
      0.0, 0.0,
      tf.to_float(new_height) / tf.to_float(true_image_shape[0, 0]),
      tf.to_float(new_width) / tf.to_float(true_image_shape[0, 1])
  ])

  if fields.InputDataFields.groundtruth_boxes in tensor_dict:
    bboxes = out_tensor_dict[fields.InputDataFields.groundtruth_boxes]
    boxlist = box_list.BoxList(bboxes)
    realigned_bboxes = box_list_ops.change_coordinate_frame(boxlist, im_box)
268
269
270

    realigned_boxes_tensor = realigned_bboxes.get()
    valid_boxes_tensor = assert_or_prune_invalid_boxes(realigned_boxes_tensor)
271
    out_tensor_dict[
272
        fields.InputDataFields.groundtruth_boxes] = valid_boxes_tensor
273
274
275
276
277
278
279

  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    keypoints = out_tensor_dict[fields.InputDataFields.groundtruth_keypoints]
    realigned_keypoints = keypoint_ops.change_coordinate_frame(keypoints,
                                                               im_box)
    out_tensor_dict[
        fields.InputDataFields.groundtruth_keypoints] = realigned_keypoints
280
281
282
283
284
285
286
287
288
289
290
    flds_gt_kpt = fields.InputDataFields.groundtruth_keypoints
    flds_gt_kpt_vis = fields.InputDataFields.groundtruth_keypoint_visibilities
    flds_gt_kpt_weights = fields.InputDataFields.groundtruth_keypoint_weights
    if flds_gt_kpt_vis not in out_tensor_dict:
      out_tensor_dict[flds_gt_kpt_vis] = tf.ones_like(
          out_tensor_dict[flds_gt_kpt][:, :, 0],
          dtype=tf.bool)
    out_tensor_dict[flds_gt_kpt_weights] = (
        keypoint_ops.keypoint_weights_from_visibilities(
            out_tensor_dict[flds_gt_kpt_vis],
            keypoint_type_weight))
291

292
293
294
  if use_bfloat16:
    preprocessed_resized_image = tf.cast(
        preprocessed_resized_image, tf.bfloat16)
295
296
297
    if fields.InputDataFields.context_features in out_tensor_dict:
      out_tensor_dict[fields.InputDataFields.context_features] = tf.cast(
          out_tensor_dict[fields.InputDataFields.context_features], tf.bfloat16)
pkulzc's avatar
pkulzc committed
298
  out_tensor_dict[fields.InputDataFields.image] = tf.squeeze(
299
      preprocessed_resized_image, axis=0)
pkulzc's avatar
pkulzc committed
300
  out_tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze(
301
      true_image_shape, axis=0)
pkulzc's avatar
pkulzc committed
302
303
  if fields.InputDataFields.groundtruth_instance_masks in out_tensor_dict:
    masks = out_tensor_dict[fields.InputDataFields.groundtruth_instance_masks]
304
    _, resized_masks, _ = image_resizer_fn(image, masks)
305
306
    if use_bfloat16:
      resized_masks = tf.cast(resized_masks, tf.bfloat16)
pkulzc's avatar
pkulzc committed
307
308
    out_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks] = resized_masks
309

pkulzc's avatar
pkulzc committed
310
  zero_indexed_groundtruth_classes = out_tensor_dict[
311
      fields.InputDataFields.groundtruth_classes] - _LABEL_OFFSET
312
  if use_multiclass_scores:
pkulzc's avatar
pkulzc committed
313
314
315
316
317
318
319
    out_tensor_dict[
        fields.InputDataFields.groundtruth_classes] = out_tensor_dict[
            fields.InputDataFields.multiclass_scores]
  else:
    out_tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
        zero_indexed_groundtruth_classes, num_classes)
  out_tensor_dict.pop(fields.InputDataFields.multiclass_scores, None)
320

pkulzc's avatar
pkulzc committed
321
322
  if fields.InputDataFields.groundtruth_confidences in out_tensor_dict:
    groundtruth_confidences = out_tensor_dict[
323
        fields.InputDataFields.groundtruth_confidences]
324
    # Map the confidences to the one-hot encoding of classes
pkulzc's avatar
pkulzc committed
325
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
326
        tf.reshape(groundtruth_confidences, [-1, 1]) *
pkulzc's avatar
pkulzc committed
327
        out_tensor_dict[fields.InputDataFields.groundtruth_classes])
328
329
330
  else:
    groundtruth_confidences = tf.ones_like(
        zero_indexed_groundtruth_classes, dtype=tf.float32)
pkulzc's avatar
pkulzc committed
331
332
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
        out_tensor_dict[fields.InputDataFields.groundtruth_classes])
333

334
  if merge_multiple_boxes:
335
336
    merged_boxes, merged_classes, merged_confidences, _ = (
        util_ops.merge_boxes_with_multiple_labels(
pkulzc's avatar
pkulzc committed
337
            out_tensor_dict[fields.InputDataFields.groundtruth_boxes],
338
339
340
            zero_indexed_groundtruth_classes,
            groundtruth_confidences,
            num_classes))
341
    merged_classes = tf.cast(merged_classes, tf.float32)
pkulzc's avatar
pkulzc committed
342
343
344
    out_tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes
    out_tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes
    out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = (
345
        merged_confidences)
pkulzc's avatar
pkulzc committed
346
347
348
  if fields.InputDataFields.groundtruth_boxes in out_tensor_dict:
    out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = tf.shape(
        out_tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]
349

pkulzc's avatar
pkulzc committed
350
  return out_tensor_dict
351
352


353
354
355
356
357
358
def pad_input_data_to_static_shapes(tensor_dict,
                                    max_num_boxes,
                                    num_classes,
                                    spatial_image_shape=None,
                                    max_num_context_features=None,
                                    context_feature_length=None):
359
360
  """Pads input tensors to static shapes.

361
362
363
  In case num_additional_channels > 0, we assume that the additional channels
  have already been concatenated to the base image.

364
365
366
367
368
369
370
371
  Args:
    tensor_dict: Tensor dictionary of input data
    max_num_boxes: Max number of groundtruth boxes needed to compute shapes for
      padding.
    num_classes: Number of classes in the dataset needed to compute shapes for
      padding.
    spatial_image_shape: A list of two integers of the form [height, width]
      containing expected spatial shape of the image.
372
373
374
    max_num_context_features (optional): The maximum number of context
      features needed to compute shapes padding.
    context_feature_length (optional): The length of the context feature.
375
376
377
378
379
380

  Returns:
    A dictionary keyed by fields.InputDataFields containing padding shapes for
    tensors in the dataset.

  Raises:
381
    ValueError: If groundtruth classes is neither rank 1 nor rank 2, or if we
382
383
384
      detect that additional channels have not been concatenated yet, or if
      max_num_context_features is not specified and context_features is in the
      tensor dict.
385
386
387
388
389
390
391
392
393
  """

  if not spatial_image_shape or spatial_image_shape == [-1, -1]:
    height, width = None, None
  else:
    height, width = spatial_image_shape  # pylint: disable=unpacking-non-sequence

  num_additional_channels = 0
  if fields.InputDataFields.image_additional_channels in tensor_dict:
394
395
    num_additional_channels = shape_utils.get_dim_as_int(tensor_dict[
        fields.InputDataFields.image_additional_channels].shape[2])
396
397
398
399

  # We assume that if num_additional_channels > 0, then it has already been
  # concatenated to the base image (but not the ground truth).
  num_channels = 3
400
  if fields.InputDataFields.image in tensor_dict:
401
402
    num_channels = shape_utils.get_dim_as_int(
        tensor_dict[fields.InputDataFields.image].shape[2])
403
404
405
406
407
408
409

  if num_additional_channels:
    if num_additional_channels >= num_channels:
      raise ValueError(
          'Image must be already concatenated with additional channels.')

    if (fields.InputDataFields.original_image in tensor_dict and
410
411
        shape_utils.get_dim_as_int(
            tensor_dict[fields.InputDataFields.original_image].shape[2]) ==
412
413
414
415
        num_channels):
      raise ValueError(
          'Image must be already concatenated with additional channels.')

416
417
418
419
420
421
  if fields.InputDataFields.context_features in tensor_dict and (
      max_num_context_features is None):
    raise ValueError('max_num_context_features must be specified in the model '
                     'config if include_context is specified in the input '
                     'config')

422
  padding_shapes = {
423
      fields.InputDataFields.image: [height, width, num_channels],
pkulzc's avatar
pkulzc committed
424
      fields.InputDataFields.original_image_spatial_shape: [2],
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
      fields.InputDataFields.image_additional_channels: [
          height, width, num_additional_channels
      ],
      fields.InputDataFields.source_id: [],
      fields.InputDataFields.filename: [],
      fields.InputDataFields.key: [],
      fields.InputDataFields.groundtruth_difficult: [max_num_boxes],
      fields.InputDataFields.groundtruth_boxes: [max_num_boxes, 4],
      fields.InputDataFields.groundtruth_classes: [max_num_boxes, num_classes],
      fields.InputDataFields.groundtruth_instance_masks: [
          max_num_boxes, height, width
      ],
      fields.InputDataFields.groundtruth_is_crowd: [max_num_boxes],
      fields.InputDataFields.groundtruth_group_of: [max_num_boxes],
      fields.InputDataFields.groundtruth_area: [max_num_boxes],
      fields.InputDataFields.groundtruth_weights: [max_num_boxes],
441
442
443
      fields.InputDataFields.groundtruth_confidences: [
          max_num_boxes, num_classes
      ],
444
445
      fields.InputDataFields.num_groundtruth_boxes: [],
      fields.InputDataFields.groundtruth_label_types: [max_num_boxes],
446
      fields.InputDataFields.groundtruth_label_weights: [max_num_boxes],
447
448
      fields.InputDataFields.true_image_shape: [3],
      fields.InputDataFields.groundtruth_image_classes: [num_classes],
449
      fields.InputDataFields.groundtruth_image_confidences: [num_classes],
450
      fields.InputDataFields.groundtruth_labeled_classes: [num_classes],
451
452
453
454
  }

  if fields.InputDataFields.original_image in tensor_dict:
    padding_shapes[fields.InputDataFields.original_image] = [
455
456
457
        height, width,
        shape_utils.get_dim_as_int(tensor_dict[fields.InputDataFields.
                                               original_image].shape[2])
458
459
460
461
    ]
  if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
    tensor_shape = (
        tensor_dict[fields.InputDataFields.groundtruth_keypoints].shape)
462
463
464
    padding_shape = [max_num_boxes,
                     shape_utils.get_dim_as_int(tensor_shape[1]),
                     shape_utils.get_dim_as_int(tensor_shape[2])]
465
466
467
468
    padding_shapes[fields.InputDataFields.groundtruth_keypoints] = padding_shape
  if fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict:
    tensor_shape = tensor_dict[fields.InputDataFields.
                               groundtruth_keypoint_visibilities].shape
469
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
470
471
472
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_visibilities] = padding_shape

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
  if fields.InputDataFields.groundtruth_keypoint_weights in tensor_dict:
    tensor_shape = (
        tensor_dict[fields.InputDataFields.groundtruth_keypoint_weights].shape)
    padding_shape = [max_num_boxes, shape_utils.get_dim_as_int(tensor_shape[1])]
    padding_shapes[fields.InputDataFields.
                   groundtruth_keypoint_weights] = padding_shape

  # Prepare for ContextRCNN related fields.
  if fields.InputDataFields.context_features in tensor_dict:
    padding_shape = [max_num_context_features, context_feature_length]
    padding_shapes[fields.InputDataFields.context_features] = padding_shape

    tensor_shape = tf.shape(
        tensor_dict[fields.InputDataFields.context_features])
    tensor_dict[fields.InputDataFields.valid_context_size] = tensor_shape[0]
    padding_shapes[fields.InputDataFields.valid_context_size] = []
  if fields.InputDataFields.context_feature_length in tensor_dict:
    padding_shapes[fields.InputDataFields.context_feature_length] = []

492
493
494
  if fields.InputDataFields.is_annotated in tensor_dict:
    padding_shapes[fields.InputDataFields.is_annotated] = []

495
496
  padded_tensor_dict = {}
  for tensor_name in tensor_dict:
497
498
    padded_tensor_dict[tensor_name] = shape_utils.pad_or_clip_nd(
        tensor_dict[tensor_name], padding_shapes[tensor_name])
499
500
501
502
503
504
505
506

  # Make sure that the number of groundtruth boxes now reflects the
  # padded/clipped tensors.
  if fields.InputDataFields.num_groundtruth_boxes in padded_tensor_dict:
    padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = (
        tf.minimum(
            padded_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
            max_num_boxes))
507
508
509
  return padded_tensor_dict


510
511
512
513
514
515
516
517
518
519
520
521
522
523
def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
524
      tf.cast(tensor_dict[fields.InputDataFields.image], dtype=tf.float32), 0)
525
526
527
528
529

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
530
531
  include_keypoint_visibilities = (
      fields.InputDataFields.groundtruth_keypoint_visibilities in tensor_dict)
532
533
534
535
  include_label_weights = (fields.InputDataFields.groundtruth_weights
                           in tensor_dict)
  include_label_confidences = (fields.InputDataFields.groundtruth_confidences
                               in tensor_dict)
536
537
  include_multiclass_scores = (fields.InputDataFields.multiclass_scores in
                               tensor_dict)
538
539
540
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
541
542
          include_label_weights=include_label_weights,
          include_label_confidences=include_label_confidences,
543
          include_multiclass_scores=include_multiclass_scores,
544
          include_instance_masks=include_instance_masks,
545
546
          include_keypoints=include_keypoints,
          include_keypoint_visibilities=include_keypoint_visibilities))
547
548
549
550
551
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict


552
553
554
555
556
557
def _get_labels_dict(input_dict):
  """Extracts labels dict from input dict."""
  required_label_keys = [
      fields.InputDataFields.num_groundtruth_boxes,
      fields.InputDataFields.groundtruth_boxes,
      fields.InputDataFields.groundtruth_classes,
558
      fields.InputDataFields.groundtruth_weights,
559
560
561
562
563
564
  ]
  labels_dict = {}
  for key in required_label_keys:
    labels_dict[key] = input_dict[key]

  optional_label_keys = [
565
      fields.InputDataFields.groundtruth_confidences,
566
      fields.InputDataFields.groundtruth_labeled_classes,
567
568
569
570
      fields.InputDataFields.groundtruth_keypoints,
      fields.InputDataFields.groundtruth_instance_masks,
      fields.InputDataFields.groundtruth_area,
      fields.InputDataFields.groundtruth_is_crowd,
571
      fields.InputDataFields.groundtruth_group_of,
572
573
574
      fields.InputDataFields.groundtruth_difficult,
      fields.InputDataFields.groundtruth_keypoint_visibilities,
      fields.InputDataFields.groundtruth_keypoint_weights,
575
576
577
578
579
580
581
582
583
584
585
  ]

  for key in optional_label_keys:
    if key in input_dict:
      labels_dict[key] = input_dict[key]
  if fields.InputDataFields.groundtruth_difficult in labels_dict:
    labels_dict[fields.InputDataFields.groundtruth_difficult] = tf.cast(
        labels_dict[fields.InputDataFields.groundtruth_difficult], tf.int32)
  return labels_dict


586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
def _replace_empty_string_with_random_number(string_tensor):
  """Returns string unchanged if non-empty, and random string tensor otherwise.

  The random string is an integer 0 and 2**63 - 1, casted as string.


  Args:
    string_tensor: A tf.tensor of dtype string.

  Returns:
    out_string: A tf.tensor of dtype string. If string_tensor contains the empty
      string, out_string will contain a random integer casted to a string.
      Otherwise string_tensor is returned unchanged.

  """

  empty_string = tf.constant('', dtype=tf.string, name='EmptyString')

  random_source_id = tf.as_string(
      tf.random_uniform(shape=[], maxval=2**63 - 1, dtype=tf.int64))

  out_string = tf.cond(
      tf.equal(string_tensor, empty_string),
      true_fn=lambda: random_source_id,
      false_fn=lambda: string_tensor)

  return out_string


615
def _get_features_dict(input_dict, include_source_id=False):
616
  """Extracts features dict from input dict."""
617
618
619
620
621

  source_id = _replace_empty_string_with_random_number(
      input_dict[fields.InputDataFields.source_id])

  hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS)
622
623
624
625
626
  features = {
      fields.InputDataFields.image:
          input_dict[fields.InputDataFields.image],
      HASH_KEY: tf.cast(hash_from_source_id, tf.int32),
      fields.InputDataFields.true_image_shape:
pkulzc's avatar
pkulzc committed
627
628
629
          input_dict[fields.InputDataFields.true_image_shape],
      fields.InputDataFields.original_image_spatial_shape:
          input_dict[fields.InputDataFields.original_image_spatial_shape]
630
  }
631
632
  if include_source_id:
    features[fields.InputDataFields.source_id] = source_id
633
634
635
  if fields.InputDataFields.original_image in input_dict:
    features[fields.InputDataFields.original_image] = input_dict[
        fields.InputDataFields.original_image]
636
637
638
  if fields.InputDataFields.image_additional_channels in input_dict:
    features[fields.InputDataFields.image_additional_channels] = input_dict[
        fields.InputDataFields.image_additional_channels]
639
640
641
642
643
644
  if fields.InputDataFields.context_features in input_dict:
    features[fields.InputDataFields.context_features] = input_dict[
        fields.InputDataFields.context_features]
  if fields.InputDataFields.valid_context_size in input_dict:
    features[fields.InputDataFields.valid_context_size] = input_dict[
        fields.InputDataFields.valid_context_size]
645
646
647
  return features


648
649
def create_train_input_fn(train_config, train_input_config,
                          model_config):
650
651
652
653
654
  """Creates a train `input` function for `Estimator`.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
655
    model_config: A model_pb2.DetectionModel.
656
657
658
659
660

  Returns:
    `input_fn` for `Estimator` in TRAIN mode.
  """

661
  def _train_input_fn(params=None):
662
663
    return train_input(train_config, train_input_config, model_config,
                       params=params)
664

665
  return _train_input_fn
666

667

668
def train_input(train_config, train_input_config,
669
                model_config, model=None, params=None, input_context=None):
670
671
672
673
674
675
676
677
678
  """Returns `features` and `labels` tensor dictionaries for training.

  Args:
    train_config: A train_pb2.TrainConfig.
    train_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.
679
680
681
    input_context: optional, A tf.distribute.InputContext object used to
      shard filenames and compute per-replica batch_size when this function
      is being called per-replica.
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [batch_size, H, W, C]
        float32 tensor with preprocessed images.
      features[HASH_KEY] is a [batch_size] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] (optional) is a
        [batch_size, H, W, C] float32 tensor with original images.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
        int32 tensor indicating the number of groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_boxes] is a
        [batch_size, num_boxes, 4] float32 tensor containing the corners of
        the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [batch_size, num_boxes, num_classes] float32 one-hot tensor of
        classes.
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes] float32 tensor containing groundtruth weights
        for the boxes.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [batch_size, num_boxes, H, W] float32 tensor containing only binary
        values, which represent instance masks for objects.
      labels[fields.InputDataFields.groundtruth_keypoints] is a
        [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
        keypoints for each box.
715
716
717
718
719
720
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes, num_keypoints] float32 tensor containing
        groundtruth weights for the keypoints.
      labels[fields.InputDataFields.groundtruth_visibilities] is a
        [batch_size, num_boxes, num_keypoints] bool tensor containing
        groundtruth visibilities for each keypoint.
721
722
      labels[fields.InputDataFields.groundtruth_labeled_classes] is a
        [batch_size, num_classes] float32 k-hot tensor of classes.
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

  Raises:
    TypeError: if the `train_config`, `train_input_config` or `model_config`
      are not of the correct type.
  """
  if not isinstance(train_config, train_pb2.TrainConfig):
    raise TypeError('For training mode, the `train_config` must be a '
                    'train_pb2.TrainConfig.')
  if not isinstance(train_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `train_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=True).preprocess
  else:
    model_preprocess_fn = model.preprocess

744
745
  num_classes = config_util.get_number_of_classes(model_config)

746
747
748
749
750
751
752
753
754
755
756
757
  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    data_augmentation_options = [
        preprocessor_builder.build(step)
        for step in train_config.data_augmentation_options
    ]
    data_augmentation_fn = functools.partial(
        augment_input_data,
        data_augmentation_options=data_augmentation_options)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
758
    keypoint_type_weight = train_input_config.keypoint_type_weight or None
759
760
761
    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
762
        num_classes=num_classes,
763
764
765
766
        data_augmentation_fn=data_augmentation_fn,
        merge_multiple_boxes=train_config.merge_multiple_label_boxes,
        retain_original_image=train_config.retain_original_images,
        use_multiclass_scores=train_config.use_multiclass_scores,
767
768
        use_bfloat16=train_config.use_bfloat16,
        keypoint_type_weight=keypoint_type_weight)
769
770
771
772

    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=train_input_config.max_number_of_boxes,
773
        num_classes=num_classes,
774
        spatial_image_shape=config_util.get_spatial_image_size(
775
776
777
778
779
780
781
782
            image_resizer_config),
        max_num_context_features=config_util.get_max_num_context_features(
            model_config),
        context_feature_length=config_util.get_context_feature_length(
            model_config))
    include_source_id = train_input_config.include_source_id
    return (_get_features_dict(tensor_dict, include_source_id),
            _get_labels_dict(tensor_dict))
783
  reduce_to_frame_fn = get_reduce_to_frame_fn(train_input_config, True)
784
785
786
787

  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      train_input_config,
      transform_input_data_fn=transform_and_pad_input_data_fn,
788
      batch_size=params['batch_size'] if params else train_config.batch_size,
789
790
      input_context=input_context,
      reduce_to_frame_fn=reduce_to_frame_fn)
791
  return dataset
792
793


794
def create_eval_input_fn(eval_config, eval_input_config, model_config):
795
796
797
798
799
  """Creates an eval `input` function for `Estimator`.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
800
    model_config: A model_pb2.DetectionModel.
801
802
803
804
805

  Returns:
    `input_fn` for `Estimator` in EVAL mode.
  """

806
  def _eval_input_fn(params=None):
807
808
    return eval_input(eval_config, eval_input_config, model_config,
                      params=params)
809

810
  return _eval_input_fn
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
def eval_input(eval_config, eval_input_config, model_config,
               model=None, params=None):
  """Returns `features` and `labels` tensor dictionaries for evaluation.

  Args:
    eval_config: An eval_pb2.EvalConfig.
    eval_input_config: An input_reader_pb2.InputReader.
    model_config: A model_pb2.DetectionModel.
    model: A pre-constructed Detection Model.
      If None, one will be created from the config.
    params: Parameter dictionary passed from the estimator.

  Returns:
    A tf.data.Dataset that holds (features, labels) tuple.

    features: Dictionary of feature tensors.
      features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
        with preprocessed images.
      features[HASH_KEY] is a [1] int32 tensor representing unique
        identifiers for the images.
      features[fields.InputDataFields.true_image_shape] is a [1, 3]
        int32 tensor representing the true image shapes, as preprocessed
        images could be padded.
      features[fields.InputDataFields.original_image] is a [1, H', W', C]
        float32 tensor with the original image.
    labels: Dictionary of groundtruth tensors.
      labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
        float32 tensor containing the corners of the groundtruth boxes.
      labels[fields.InputDataFields.groundtruth_classes] is a
        [num_boxes, num_classes] float32 one-hot tensor of classes.
      labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
        float32 tensor containing object areas.
      labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
        bool tensor indicating if the boxes enclose a crowd.
      labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
        int32 tensor indicating if the boxes represent difficult instances.
      -- Optional --
      labels[fields.InputDataFields.groundtruth_instance_masks] is a
        [1, num_boxes, H, W] float32 tensor containing only binary values,
        which represent instance masks for objects.
853
854
855
856
857
858
      labels[fields.InputDataFields.groundtruth_weights] is a
        [batch_size, num_boxes, num_keypoints] float32 tensor containing
        groundtruth weights for the keypoints.
      labels[fields.InputDataFields.groundtruth_visibilities] is a
        [batch_size, num_boxes, num_keypoints] bool tensor containing
        groundtruth visibilities for each keypoint.
859
860
861
862
863
      labels[fields.InputDataFields.groundtruth_group_of] is a [1, num_boxes]
        bool tensor indicating if the box covers more than 5 instances of the
        same class which heavily occlude each other.
      labels[fields.InputDataFields.groundtruth_labeled_classes] is a
        [num_boxes, num_classes] float32 k-hot tensor of classes.
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

  Raises:
    TypeError: if the `eval_config`, `eval_input_config` or `model_config`
      are not of the correct type.
  """
  params = params or {}
  if not isinstance(eval_config, eval_pb2.EvalConfig):
    raise TypeError('For eval mode, the `eval_config` must be a '
                    'train_pb2.EvalConfig.')
  if not isinstance(eval_input_config, input_reader_pb2.InputReader):
    raise TypeError('The `eval_input_config` must be a '
                    'input_reader_pb2.InputReader.')
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise TypeError('The `model_config` must be a '
                    'model_pb2.DetectionModel.')

880
881
882
883
884
885
886
887
  if eval_config.force_no_resize:
    arch = model_config.WhichOneof('model')
    arch_config = getattr(model_config, arch)
    image_resizer_proto = image_resizer_pb2.ImageResizer()
    image_resizer_proto.identity_resizer.CopyFrom(
        image_resizer_pb2.IdentityResizer())
    arch_config.image_resizer.CopyFrom(image_resizer_proto)

888
889
890
891
892
893
894
895
896
897
898
899
  if model is None:
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess
  else:
    model_preprocess_fn = model.preprocess

  def transform_and_pad_input_data_fn(tensor_dict):
    """Combines transform and pad operation."""
    num_classes = config_util.get_number_of_classes(model_config)

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
900
    keypoint_type_weight = eval_input_config.keypoint_type_weight or None
901
902
903
904
905
906

    transform_data_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None,
907
908
        retain_original_image=eval_config.retain_original_images,
        retain_original_image_additional_channels=
909
910
        eval_config.retain_original_image_additional_channels,
        keypoint_type_weight=keypoint_type_weight)
911
912
913
914
915
    tensor_dict = pad_input_data_to_static_shapes(
        tensor_dict=transform_data_fn(tensor_dict),
        max_num_boxes=eval_input_config.max_number_of_boxes,
        num_classes=config_util.get_number_of_classes(model_config),
        spatial_image_shape=config_util.get_spatial_image_size(
916
917
918
919
920
921
922
923
            image_resizer_config),
        max_num_context_features=config_util.get_max_num_context_features(
            model_config),
        context_feature_length=config_util.get_context_feature_length(
            model_config))
    include_source_id = eval_input_config.include_source_id
    return (_get_features_dict(tensor_dict, include_source_id),
            _get_labels_dict(tensor_dict))
924
925
926

  reduce_to_frame_fn = get_reduce_to_frame_fn(eval_input_config, False)

927
928
929
  dataset = INPUT_BUILDER_UTIL_MAP['dataset_build'](
      eval_input_config,
      batch_size=params['batch_size'] if params else eval_config.batch_size,
930
931
      transform_input_data_fn=transform_and_pad_input_data_fn,
      reduce_to_frame_fn=reduce_to_frame_fn)
932
  return dataset
933
934


935
def create_predict_input_fn(model_config, predict_input_config):
936
937
  """Creates a predict `input` function for `Estimator`.

938
939
  Args:
    model_config: A model_pb2.DetectionModel.
940
    predict_input_config: An input_reader_pb2.InputReader.
941

942
943
944
945
  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

946
  def _predict_input_fn(params=None):
947
948
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

949
950
951
    Args:
      params: Parameter dictionary passed from the estimator.

952
953
954
    Returns:
      `ServingInputReceiver`.
    """
955
    del params
956
    example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')
957

958
    num_classes = config_util.get_number_of_classes(model_config)
959
960
961
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess

962
963
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
964

965
    transform_fn = functools.partial(
966
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
967
968
969
970
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

971
972
973
    decoder = tf_example_decoder.TfExampleDecoder(
        load_instance_masks=False,
        num_additional_channels=predict_input_config.num_additional_channels)
974
    input_dict = transform_fn(decoder.decode(example))
975
    images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32)
976
    images = tf.expand_dims(images, axis=0)
977
978
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)
979
980

    return tf.estimator.export.ServingInputReceiver(
981
982
983
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
984
985
986
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007


def get_reduce_to_frame_fn(input_reader_config, is_training):
  """Returns a function reducing sequence tensors to single frame tensors.

  If the input type is not TF_SEQUENCE_EXAMPLE, the tensors are passed through
  this function unchanged. Otherwise, when in training mode, a single frame is
  selected at random from the sequence example, and the tensors for that frame
  are converted to single frame tensors, with all associated context features.
  In evaluation mode all frames are converted to single frame tensors with
  copied context tensors. After the sequence example tensors are converted into
  one or many single frame tensors, the images from each frame are decoded.

  Args:
    input_reader_config: An input_reader_pb2.InputReader.
    is_training: Whether we are in training mode.

  Returns:
    `reduce_to_frame_fn` for the dataset builder
  """
  if input_reader_config.input_type != (
1008
1009
      input_reader_pb2.InputType.Value('TF_SEQUENCE_EXAMPLE')):
    return lambda dataset, dataset_map_fn, batch_size, config: dataset
1010
  else:
1011
1012
    def reduce_to_frame(dataset, dataset_map_fn, batch_size,
                        input_reader_config):
1013
1014
1015
1016
      """Returns a function reducing sequence tensors to single frame tensors.

      Args:
        dataset: A tf dataset containing sequence tensors.
1017
1018
1019
1020
1021
1022
        dataset_map_fn: A function that handles whether to
          map_with_legacy_function for this dataset
        batch_size: used if map_with_legacy_function is true to determine
          num_parallel_calls
        input_reader_config: used if map_with_legacy_function is true to
          determine num_parallel_calls
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054

      Returns:
        A tf dataset containing single frame tensors.
      """
      if is_training:
        def get_single_frame(tensor_dict):
          """Returns a random frame from a sequence.

          Picks a random frame and returns slices of sequence tensors
          corresponding to the random frame. Returns non-sequence tensors
          unchanged.

          Args:
            tensor_dict: A dictionary containing sequence tensors.

          Returns:
            Tensors for a single random frame within the sequence.
          """
          num_frames = tf.cast(
              tf.shape(tensor_dict[fields.InputDataFields.source_id])[0],
              dtype=tf.int32)
          frame_index = tf.random.uniform((), minval=0, maxval=num_frames,
                                          dtype=tf.int32)
          out_tensor_dict = {}
          for key in tensor_dict:
            if key in fields.SEQUENCE_FIELDS:
              # Slice random frame from sequence tensors
              out_tensor_dict[key] = tensor_dict[key][frame_index]
            else:
              # Copy all context tensors.
              out_tensor_dict[key] = tensor_dict[key]
          return out_tensor_dict
1055
1056
        dataset = dataset_map_fn(dataset, get_single_frame, batch_size,
                                 input_reader_config)
1057
      else:
1058
1059
        dataset = dataset_map_fn(dataset, util_ops.tile_context_tensors,
                                 batch_size, input_reader_config)
1060
1061
        dataset = dataset.unbatch()
      # Decode frame here as SequenceExample tensors contain encoded images.
1062
1063
      dataset = dataset_map_fn(dataset, util_ops.decode_image, batch_size,
                               input_reader_config)
1064
1065
      return dataset
    return reduce_to_frame