run_pretraining.py 8.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Hongkun Yu's avatar
Hongkun Yu committed
15
"""Run masked LM/next sentence pre-training for BERT in TF 2.x."""
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Hongkun Yu's avatar
Hongkun Yu committed
20
# Import libraries
21
22
23
from absl import app
from absl import flags
from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
24
import gin
25
import tensorflow as tf
26
from official.modeling import performance
27
from official.nlp import optimization
28
from official.nlp.bert import bert_models
29
from official.nlp.bert import common_flags
30
from official.nlp.bert import configs
31
from official.nlp.bert import input_pipeline
32
from official.nlp.bert import model_training_utils
33
from official.utils.misc import distribution_utils
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

flags.DEFINE_string('input_files', None,
                    'File path to retrieve training data for pre-training.')
# Model training specific flags.
flags.DEFINE_integer(
    'max_seq_length', 128,
    'The maximum total input sequence length after WordPiece tokenization. '
    'Sequences longer than this will be truncated, and sequences shorter '
    'than this will be padded.')
flags.DEFINE_integer('max_predictions_per_seq', 20,
                     'Maximum predictions per sequence_output.')
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
flags.DEFINE_integer('num_steps_per_epoch', 1000,
                     'Total number of training steps to run per epoch.')
flags.DEFINE_float('warmup_steps', 10000,
                   'Warmup steps for Adam weight decay optimizer.')
51
52
flags.DEFINE_bool('use_next_sentence_label', True,
                  'Whether to use next sentence label to compute final loss.')
Chen Chen's avatar
Chen Chen committed
53
54
55
flags.DEFINE_bool('train_summary_interval', 0, 'Step interval for training '
                  'summaries. If the value is a negative number, '
                  'then training summaries are not enabled.')
56

57
58
common_flags.define_common_bert_flags()

59
60
61
FLAGS = flags.FLAGS


Hongkun Yu's avatar
Hongkun Yu committed
62
def get_pretrain_dataset_fn(input_file_pattern, seq_length,
63
64
                            max_predictions_per_seq, global_batch_size,
                            use_next_sentence_label=True):
65
  """Returns input dataset from input file string."""
66
  def _dataset_fn(ctx=None):
67
    """Returns tf.data.Dataset for distributed BERT pretraining."""
Hongkun Yu's avatar
Hongkun Yu committed
68
    input_patterns = input_file_pattern.split(',')
Hongkun Yu's avatar
Hongkun Yu committed
69
    batch_size = ctx.get_per_replica_batch_size(global_batch_size)
70
    train_dataset = input_pipeline.create_pretrain_dataset(
Hongkun Yu's avatar
Hongkun Yu committed
71
        input_patterns,
72
73
74
75
        seq_length,
        max_predictions_per_seq,
        batch_size,
        is_training=True,
76
77
        input_pipeline_context=ctx,
        use_next_sentence_label=use_next_sentence_label)
78
79
    return train_dataset

Hongkun Yu's avatar
Hongkun Yu committed
80
  return _dataset_fn
81
82


83
def get_loss_fn():
84
85
86
  """Returns loss function for BERT pretraining."""

  def _bert_pretrain_loss_fn(unused_labels, losses, **unused_args):
87
    return tf.reduce_mean(losses)
88
89
90
91
92
93

  return _bert_pretrain_loss_fn


def run_customized_training(strategy,
                            bert_config,
André Susano Pinto's avatar
André Susano Pinto committed
94
                            init_checkpoint,
95
96
97
98
                            max_seq_length,
                            max_predictions_per_seq,
                            model_dir,
                            steps_per_epoch,
99
                            steps_per_loop,
100
101
102
                            epochs,
                            initial_lr,
                            warmup_steps,
103
104
                            end_lr,
                            optimizer_type,
105
                            input_files,
106
                            train_batch_size,
Chen Chen's avatar
Chen Chen committed
107
                            use_next_sentence_label=True,
Chen Chen's avatar
Chen Chen committed
108
                            train_summary_interval=0,
Zongwei Zhou's avatar
Zongwei Zhou committed
109
110
111
                            custom_callbacks=None,
                            explicit_allreduce=False,
                            pre_allreduce_callbacks=None,
Zongwei Zhou's avatar
Zongwei Zhou committed
112
113
                            post_allreduce_callbacks=None,
                            allreduce_bytes_per_pack=0):
114
115
  """Run BERT pretrain model training using low-level API."""

Hongkun Yu's avatar
Hongkun Yu committed
116
117
  train_input_fn = get_pretrain_dataset_fn(input_files, max_seq_length,
                                           max_predictions_per_seq,
118
119
                                           train_batch_size,
                                           use_next_sentence_label)
120
121

  def _get_pretrain_model():
122
    """Gets a pretraining model."""
123
    pretrain_model, core_model = bert_models.pretrain_model(
124
125
        bert_config, max_seq_length, max_predictions_per_seq,
        use_next_sentence_label=use_next_sentence_label)
126
    optimizer = optimization.create_optimizer(
127
        initial_lr, steps_per_epoch * epochs, warmup_steps,
128
        end_lr, optimizer_type)
129
130
131
132
    pretrain_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
133
134
    return pretrain_model, core_model

135
  trained_model = model_training_utils.run_customized_training_loop(
136
137
      strategy=strategy,
      model_fn=_get_pretrain_model,
138
139
      loss_fn=get_loss_fn(),
      scale_loss=FLAGS.scale_loss,
140
      model_dir=model_dir,
André Susano Pinto's avatar
André Susano Pinto committed
141
      init_checkpoint=init_checkpoint,
142
143
      train_input_fn=train_input_fn,
      steps_per_epoch=steps_per_epoch,
144
      steps_per_loop=steps_per_loop,
Chen Chen's avatar
Chen Chen committed
145
      epochs=epochs,
Chen Chen's avatar
Chen Chen committed
146
      sub_model_export_name='pretrained/bert_model',
Zongwei Zhou's avatar
Zongwei Zhou committed
147
148
149
      explicit_allreduce=explicit_allreduce,
      pre_allreduce_callbacks=pre_allreduce_callbacks,
      post_allreduce_callbacks=post_allreduce_callbacks,
Zongwei Zhou's avatar
Zongwei Zhou committed
150
      allreduce_bytes_per_pack=allreduce_bytes_per_pack,
Chen Chen's avatar
Chen Chen committed
151
      train_summary_interval=train_summary_interval,
Chen Chen's avatar
Chen Chen committed
152
      custom_callbacks=custom_callbacks)
153

154
155
  return trained_model

156

Chen Chen's avatar
Chen Chen committed
157
def run_bert_pretrain(strategy, custom_callbacks=None):
158
159
  """Runs BERT pre-training."""

160
  bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
161
162
163
164
  if not strategy:
    raise ValueError('Distribution strategy is not specified.')

  # Runs customized training loop.
Chen Chen's avatar
Chen Chen committed
165
  logging.info('Training using customized training loop TF 2.0 with distributed'
166
167
               'strategy.')

168
169
  performance.set_mixed_precision_policy(common_flags.dtype())

Zongwei Zhou's avatar
Zongwei Zhou committed
170
171
172
173
174
175
  # Only when explicit_allreduce = True, post_allreduce_callbacks and
  # allreduce_bytes_per_pack will take effect. optimizer.apply_gradients() no
  # longer implicitly allreduce gradients, users manually allreduce gradient and
  # pass the allreduced grads_and_vars to apply_gradients().
  # With explicit_allreduce = True, clip_by_global_norm is moved to after
  # allreduce.
176
177
178
  return run_customized_training(
      strategy,
      bert_config,
André Susano Pinto's avatar
André Susano Pinto committed
179
      FLAGS.init_checkpoint,  # Used to initialize only the BERT submodel.
180
181
182
183
      FLAGS.max_seq_length,
      FLAGS.max_predictions_per_seq,
      FLAGS.model_dir,
      FLAGS.num_steps_per_epoch,
184
      FLAGS.steps_per_loop,
185
186
187
      FLAGS.num_train_epochs,
      FLAGS.learning_rate,
      FLAGS.warmup_steps,
188
189
      FLAGS.end_lr,
      FLAGS.optimizer_type,
190
      FLAGS.input_files,
191
      FLAGS.train_batch_size,
Chen Chen's avatar
Chen Chen committed
192
      FLAGS.use_next_sentence_label,
Chen Chen's avatar
Chen Chen committed
193
      FLAGS.train_summary_interval,
Zongwei Zhou's avatar
Zongwei Zhou committed
194
195
      custom_callbacks=custom_callbacks,
      explicit_allreduce=FLAGS.explicit_allreduce,
196
197
      pre_allreduce_callbacks=[
          model_training_utils.clip_by_global_norm_callback
Zongwei Zhou's avatar
Zongwei Zhou committed
198
199
      ],
      allreduce_bytes_per_pack=FLAGS.allreduce_bytes_per_pack)
200
201
202


def main(_):
Hongkun Yu's avatar
Hongkun Yu committed
203
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)
204
205
  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'
Zongwei Zhou's avatar
Zongwei Zhou committed
206
207
208
209
  # Configures cluster spec for multi-worker distribution strategy.
  if FLAGS.num_gpus > 0:
    _ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
                                             FLAGS.task_index)
210
211
212
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
Zongwei Zhou's avatar
Zongwei Zhou committed
213
      all_reduce_alg=FLAGS.all_reduce_alg,
214
      tpu_address=FLAGS.tpu)
215
216
217
  if strategy:
    print('***** Number of cores used : ', strategy.num_replicas_in_sync)

218
  run_bert_pretrain(strategy)
219
220
221
222


if __name__ == '__main__':
  app.run(main)