run_pretraining.py 7.21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Hongkun Yu's avatar
Hongkun Yu committed
15
"""Run masked LM/next sentence pre-training for BERT in TF 2.x."""
16
17
18
19
20
21
22
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app
from absl import flags
from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
23
import gin
24
import tensorflow as tf
25
from official.modeling import performance
26
from official.nlp import optimization
27
from official.nlp.bert import bert_models
28
from official.nlp.bert import common_flags
29
from official.nlp.bert import configs
30
from official.nlp.bert import input_pipeline
31
from official.nlp.bert import model_training_utils
32
from official.utils.misc import distribution_utils
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

flags.DEFINE_string('input_files', None,
                    'File path to retrieve training data for pre-training.')
# Model training specific flags.
flags.DEFINE_integer(
    'max_seq_length', 128,
    'The maximum total input sequence length after WordPiece tokenization. '
    'Sequences longer than this will be truncated, and sequences shorter '
    'than this will be padded.')
flags.DEFINE_integer('max_predictions_per_seq', 20,
                     'Maximum predictions per sequence_output.')
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
flags.DEFINE_integer('num_steps_per_epoch', 1000,
                     'Total number of training steps to run per epoch.')
flags.DEFINE_float('warmup_steps', 10000,
                   'Warmup steps for Adam weight decay optimizer.')
50
51
flags.DEFINE_bool('use_next_sentence_label', True,
                  'Whether to use next sentence label to compute final loss.')
Chen Chen's avatar
Chen Chen committed
52
53
54
flags.DEFINE_bool('train_summary_interval', 0, 'Step interval for training '
                  'summaries. If the value is a negative number, '
                  'then training summaries are not enabled.')
55

56
57
common_flags.define_common_bert_flags()

58
59
60
FLAGS = flags.FLAGS


Hongkun Yu's avatar
Hongkun Yu committed
61
def get_pretrain_dataset_fn(input_file_pattern, seq_length,
62
63
                            max_predictions_per_seq, global_batch_size,
                            use_next_sentence_label=True):
64
  """Returns input dataset from input file string."""
65
  def _dataset_fn(ctx=None):
66
    """Returns tf.data.Dataset for distributed BERT pretraining."""
Hongkun Yu's avatar
Hongkun Yu committed
67
    input_patterns = input_file_pattern.split(',')
Hongkun Yu's avatar
Hongkun Yu committed
68
    batch_size = ctx.get_per_replica_batch_size(global_batch_size)
69
    train_dataset = input_pipeline.create_pretrain_dataset(
Hongkun Yu's avatar
Hongkun Yu committed
70
        input_patterns,
71
72
73
74
        seq_length,
        max_predictions_per_seq,
        batch_size,
        is_training=True,
75
76
        input_pipeline_context=ctx,
        use_next_sentence_label=use_next_sentence_label)
77
78
    return train_dataset

Hongkun Yu's avatar
Hongkun Yu committed
79
  return _dataset_fn
80
81


82
def get_loss_fn():
83
84
85
  """Returns loss function for BERT pretraining."""

  def _bert_pretrain_loss_fn(unused_labels, losses, **unused_args):
86
    return tf.reduce_mean(losses)
87
88
89
90
91
92

  return _bert_pretrain_loss_fn


def run_customized_training(strategy,
                            bert_config,
André Susano Pinto's avatar
André Susano Pinto committed
93
                            init_checkpoint,
94
95
96
97
                            max_seq_length,
                            max_predictions_per_seq,
                            model_dir,
                            steps_per_epoch,
98
                            steps_per_loop,
99
100
101
                            epochs,
                            initial_lr,
                            warmup_steps,
102
103
                            end_lr,
                            optimizer_type,
104
                            input_files,
105
                            train_batch_size,
Chen Chen's avatar
Chen Chen committed
106
                            use_next_sentence_label=True,
Chen Chen's avatar
Chen Chen committed
107
                            train_summary_interval=0,
Chen Chen's avatar
Chen Chen committed
108
                            custom_callbacks=None):
109
110
  """Run BERT pretrain model training using low-level API."""

Hongkun Yu's avatar
Hongkun Yu committed
111
112
  train_input_fn = get_pretrain_dataset_fn(input_files, max_seq_length,
                                           max_predictions_per_seq,
113
114
                                           train_batch_size,
                                           use_next_sentence_label)
115
116

  def _get_pretrain_model():
117
    """Gets a pretraining model."""
118
    pretrain_model, core_model = bert_models.pretrain_model(
119
120
        bert_config, max_seq_length, max_predictions_per_seq,
        use_next_sentence_label=use_next_sentence_label)
121
    optimizer = optimization.create_optimizer(
122
        initial_lr, steps_per_epoch * epochs, warmup_steps,
123
        end_lr, optimizer_type)
124
125
126
127
    pretrain_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
128
129
    return pretrain_model, core_model

130
  trained_model = model_training_utils.run_customized_training_loop(
131
132
      strategy=strategy,
      model_fn=_get_pretrain_model,
133
134
      loss_fn=get_loss_fn(),
      scale_loss=FLAGS.scale_loss,
135
      model_dir=model_dir,
André Susano Pinto's avatar
André Susano Pinto committed
136
      init_checkpoint=init_checkpoint,
137
138
      train_input_fn=train_input_fn,
      steps_per_epoch=steps_per_epoch,
139
      steps_per_loop=steps_per_loop,
Chen Chen's avatar
Chen Chen committed
140
      epochs=epochs,
Chen Chen's avatar
Chen Chen committed
141
      sub_model_export_name='pretrained/bert_model',
Chen Chen's avatar
Chen Chen committed
142
      train_summary_interval=train_summary_interval,
Chen Chen's avatar
Chen Chen committed
143
      custom_callbacks=custom_callbacks)
144

145
146
  return trained_model

147

Chen Chen's avatar
Chen Chen committed
148
def run_bert_pretrain(strategy, custom_callbacks=None):
149
150
  """Runs BERT pre-training."""

151
  bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
152
153
154
155
  if not strategy:
    raise ValueError('Distribution strategy is not specified.')

  # Runs customized training loop.
Chen Chen's avatar
Chen Chen committed
156
  logging.info('Training using customized training loop TF 2.0 with distributed'
157
158
               'strategy.')

159
160
  performance.set_mixed_precision_policy(common_flags.dtype())

161
162
163
  return run_customized_training(
      strategy,
      bert_config,
André Susano Pinto's avatar
André Susano Pinto committed
164
      FLAGS.init_checkpoint,  # Used to initialize only the BERT submodel.
165
166
167
168
      FLAGS.max_seq_length,
      FLAGS.max_predictions_per_seq,
      FLAGS.model_dir,
      FLAGS.num_steps_per_epoch,
169
      FLAGS.steps_per_loop,
170
171
172
      FLAGS.num_train_epochs,
      FLAGS.learning_rate,
      FLAGS.warmup_steps,
173
174
      FLAGS.end_lr,
      FLAGS.optimizer_type,
175
      FLAGS.input_files,
176
      FLAGS.train_batch_size,
Chen Chen's avatar
Chen Chen committed
177
      FLAGS.use_next_sentence_label,
Chen Chen's avatar
Chen Chen committed
178
      FLAGS.train_summary_interval,
Chen Chen's avatar
Chen Chen committed
179
      custom_callbacks=custom_callbacks)
180
181
182


def main(_):
Hongkun Yu's avatar
Hongkun Yu committed
183
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)
184
185
  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'
186
187
188
189
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
190
191
192
  if strategy:
    print('***** Number of cores used : ', strategy.num_replicas_in_sync)

193
  run_bert_pretrain(strategy)
194
195
196
197


if __name__ == '__main__':
  app.run(main)