run_pretraining.py 6.12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Hongkun Yu's avatar
Hongkun Yu committed
15
"""Run masked LM/next sentence pre-training for BERT in TF 2.x."""
16
17
18
19
20
21
22
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from absl import app
from absl import flags
from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
23
import gin
24
25
import tensorflow as tf

26
from official.modeling import model_training_utils
27
from official.modeling import performance
28
from official.nlp import optimization
29
from official.nlp.bert import bert_models
30
from official.nlp.bert import common_flags
31
from official.nlp.bert import configs
32
from official.nlp.bert import input_pipeline
33
from official.utils.misc import distribution_utils
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

flags.DEFINE_string('input_files', None,
                    'File path to retrieve training data for pre-training.')
# Model training specific flags.
flags.DEFINE_integer(
    'max_seq_length', 128,
    'The maximum total input sequence length after WordPiece tokenization. '
    'Sequences longer than this will be truncated, and sequences shorter '
    'than this will be padded.')
flags.DEFINE_integer('max_predictions_per_seq', 20,
                     'Maximum predictions per sequence_output.')
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
flags.DEFINE_integer('num_steps_per_epoch', 1000,
                     'Total number of training steps to run per epoch.')
flags.DEFINE_float('warmup_steps', 10000,
                   'Warmup steps for Adam weight decay optimizer.')

52
common_flags.define_common_bert_flags()
Hongkun Yu's avatar
Hongkun Yu committed
53
common_flags.define_gin_flags()
54

55
56
57
FLAGS = flags.FLAGS


Hongkun Yu's avatar
Hongkun Yu committed
58
59
def get_pretrain_dataset_fn(input_file_pattern, seq_length,
                            max_predictions_per_seq, global_batch_size):
60
  """Returns input dataset from input file string."""
61
  def _dataset_fn(ctx=None):
62
    """Returns tf.data.Dataset for distributed BERT pretraining."""
Hongkun Yu's avatar
Hongkun Yu committed
63
    input_patterns = input_file_pattern.split(',')
Hongkun Yu's avatar
Hongkun Yu committed
64
    batch_size = ctx.get_per_replica_batch_size(global_batch_size)
65
    train_dataset = input_pipeline.create_pretrain_dataset(
Hongkun Yu's avatar
Hongkun Yu committed
66
        input_patterns,
67
68
69
70
71
        seq_length,
        max_predictions_per_seq,
        batch_size,
        is_training=True,
        input_pipeline_context=ctx)
72
73
    return train_dataset

Hongkun Yu's avatar
Hongkun Yu committed
74
  return _dataset_fn
75
76


77
def get_loss_fn(loss_factor=1.0):
78
79
80
  """Returns loss function for BERT pretraining."""

  def _bert_pretrain_loss_fn(unused_labels, losses, **unused_args):
81
    return tf.reduce_mean(losses) * loss_factor
82
83
84
85
86
87
88
89
90
91

  return _bert_pretrain_loss_fn


def run_customized_training(strategy,
                            bert_config,
                            max_seq_length,
                            max_predictions_per_seq,
                            model_dir,
                            steps_per_epoch,
92
                            steps_per_loop,
93
94
95
96
                            epochs,
                            initial_lr,
                            warmup_steps,
                            input_files,
97
                            train_batch_size):
98
99
  """Run BERT pretrain model training using low-level API."""

Hongkun Yu's avatar
Hongkun Yu committed
100
101
102
  train_input_fn = get_pretrain_dataset_fn(input_files, max_seq_length,
                                           max_predictions_per_seq,
                                           train_batch_size)
103
104

  def _get_pretrain_model():
105
    """Gets a pretraining model."""
106
107
    pretrain_model, core_model = bert_models.pretrain_model(
        bert_config, max_seq_length, max_predictions_per_seq)
108
    optimizer = optimization.create_optimizer(
109
        initial_lr, steps_per_epoch * epochs, warmup_steps)
110
111
112
113
    pretrain_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
114
115
    return pretrain_model, core_model

116
  trained_model = model_training_utils.run_customized_training_loop(
117
118
      strategy=strategy,
      model_fn=_get_pretrain_model,
119
120
121
      loss_fn=get_loss_fn(
          loss_factor=1.0 /
          strategy.num_replicas_in_sync if FLAGS.scale_loss else 1.0),
122
123
124
      model_dir=model_dir,
      train_input_fn=train_input_fn,
      steps_per_epoch=steps_per_epoch,
125
      steps_per_loop=steps_per_loop,
Chen Chen's avatar
Chen Chen committed
126
127
      epochs=epochs,
      sub_model_export_name='pretrained/bert_model')
128

129
130
  return trained_model

131
132
133
134

def run_bert_pretrain(strategy):
  """Runs BERT pre-training."""

135
  bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
136
137
138
139
140
141
142
  if not strategy:
    raise ValueError('Distribution strategy is not specified.')

  # Runs customized training loop.
  logging.info('Training using customized training loop TF 2.0 with distrubuted'
               'strategy.')

143
144
  performance.set_mixed_precision_policy(common_flags.dtype())

145
146
147
148
149
150
151
  return run_customized_training(
      strategy,
      bert_config,
      FLAGS.max_seq_length,
      FLAGS.max_predictions_per_seq,
      FLAGS.model_dir,
      FLAGS.num_steps_per_epoch,
152
      FLAGS.steps_per_loop,
153
154
155
156
      FLAGS.num_train_epochs,
      FLAGS.learning_rate,
      FLAGS.warmup_steps,
      FLAGS.input_files,
157
      FLAGS.train_batch_size)
158
159
160
161


def main(_):
  # Users should always run this script under TF 2.x
Hongkun Yu's avatar
Hongkun Yu committed
162
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)
163
164
  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'
165
166
167
168
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
169
170
171
  if strategy:
    print('***** Number of cores used : ', strategy.num_replicas_in_sync)

172
  run_bert_pretrain(strategy)
173
174
175
176


if __name__ == '__main__':
  app.run(main)