eval_util_test.py 19.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for eval_util."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import unittest
22
from absl.testing import parameterized
23

24
import numpy as np
pkulzc's avatar
pkulzc committed
25
26
import six
from six.moves import range
27
import tensorflow.compat.v1 as tf
28
from google.protobuf import text_format
29
30
31

from object_detection import eval_util
from object_detection.core import standard_fields as fields
32
from object_detection.metrics import coco_evaluation
33
from object_detection.protos import eval_pb2
34
from object_detection.utils import test_case
35
from object_detection.utils import tf_version
36
37


38
class EvalUtilTest(test_case.TestCase, parameterized.TestCase):
39
40

  def _get_categories_list(self):
41
42
43
    return [{'id': 1, 'name': 'person'},
            {'id': 2, 'name': 'dog'},
            {'id': 3, 'name': 'cat'}]
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
  def _get_categories_list_with_keypoints(self):
    return [{
        'id': 1,
        'name': 'person',
        'keypoints': {
            'left_eye': 0,
            'right_eye': 3
        }
    }, {
        'id': 2,
        'name': 'dog',
        'keypoints': {
            'tail_start': 1,
            'mouth': 2
        }
    }, {
        'id': 3,
        'name': 'cat'
    }]

65
66
67
68
69
  def _make_evaluation_dict(self,
                            resized_groundtruth_masks=False,
                            batch_size=1,
                            max_gt_boxes=None,
                            scale_to_absolute=False):
70
71
72
    input_data_fields = fields.InputDataFields
    detection_fields = fields.DetectionResultFields

73
74
75
76
    image = tf.zeros(shape=[batch_size, 20, 20, 3], dtype=tf.uint8)
    if batch_size == 1:
      key = tf.constant('image1')
    else:
77
      key = tf.constant([str(i) for i in range(batch_size)])
78
79
80
81
82
83
84
    detection_boxes = tf.tile(tf.constant([[[0., 0., 1., 1.]]]),
                              multiples=[batch_size, 1, 1])
    detection_scores = tf.tile(tf.constant([[0.8]]), multiples=[batch_size, 1])
    detection_classes = tf.tile(tf.constant([[0]]), multiples=[batch_size, 1])
    detection_masks = tf.tile(tf.ones(shape=[1, 1, 20, 20], dtype=tf.float32),
                              multiples=[batch_size, 1, 1, 1])
    num_detections = tf.ones([batch_size])
85
86
87
    groundtruth_boxes = tf.constant([[0., 0., 1., 1.]])
    groundtruth_classes = tf.constant([1])
    groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8)
88
    groundtruth_keypoints = tf.constant([[0.0, 0.0], [0.5, 0.5], [1.0, 1.0]])
89
90
    if resized_groundtruth_masks:
      groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8)
91
92
93
94
95
96
97
98
99

    if batch_size > 1:
      groundtruth_boxes = tf.tile(tf.expand_dims(groundtruth_boxes, 0),
                                  multiples=[batch_size, 1, 1])
      groundtruth_classes = tf.tile(tf.expand_dims(groundtruth_classes, 0),
                                    multiples=[batch_size, 1])
      groundtruth_instance_masks = tf.tile(
          tf.expand_dims(groundtruth_instance_masks, 0),
          multiples=[batch_size, 1, 1, 1])
100
101
102
      groundtruth_keypoints = tf.tile(
          tf.expand_dims(groundtruth_keypoints, 0),
          multiples=[batch_size, 1, 1])
103

104
105
106
107
108
109
110
111
112
113
    detections = {
        detection_fields.detection_boxes: detection_boxes,
        detection_fields.detection_scores: detection_scores,
        detection_fields.detection_classes: detection_classes,
        detection_fields.detection_masks: detection_masks,
        detection_fields.num_detections: num_detections
    }
    groundtruth = {
        input_data_fields.groundtruth_boxes: groundtruth_boxes,
        input_data_fields.groundtruth_classes: groundtruth_classes,
114
        input_data_fields.groundtruth_keypoints: groundtruth_keypoints,
115
116
        input_data_fields.groundtruth_instance_masks: groundtruth_instance_masks
    }
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    if batch_size > 1:
      return eval_util.result_dict_for_batched_example(
          image, key, detections, groundtruth,
          scale_to_absolute=scale_to_absolute,
          max_gt_boxes=max_gt_boxes)
    else:
      return eval_util.result_dict_for_single_example(
          image, key, detections, groundtruth,
          scale_to_absolute=scale_to_absolute)

  @parameterized.parameters(
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
  )
133
  @unittest.skipIf(tf_version.is_tf2(), 'Only compatible with TF1.X')
134
135
136
  def test_get_eval_metric_ops_for_coco_detections(self, batch_size=1,
                                                   max_gt_boxes=None,
                                                   scale_to_absolute=False):
137
138
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(['coco_detection_metrics'])
139
    categories = self._get_categories_list()
140
141
142
    eval_dict = self._make_evaluation_dict(batch_size=batch_size,
                                           max_gt_boxes=max_gt_boxes,
                                           scale_to_absolute=scale_to_absolute)
143
    metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
144
        eval_config, categories, eval_dict)
145
146
147
148
    _, update_op = metric_ops['DetectionBoxes_Precision/mAP']

    with self.test_session() as sess:
      metrics = {}
pkulzc's avatar
pkulzc committed
149
      for key, (value_op, _) in six.iteritems(metric_ops):
150
151
152
153
154
155
        metrics[key] = value_op
      sess.run(update_op)
      metrics = sess.run(metrics)
      self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
      self.assertNotIn('DetectionMasks_Precision/mAP', metrics)

156
157
158
159
160
161
  @parameterized.parameters(
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
  )
162
  @unittest.skipIf(tf_version.is_tf2(), 'Only compatible with TF1.X')
163
164
  def test_get_eval_metric_ops_for_coco_detections_and_masks(
      self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
165
166
167
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'coco_mask_metrics'])
168
    categories = self._get_categories_list()
169
170
171
    eval_dict = self._make_evaluation_dict(batch_size=batch_size,
                                           max_gt_boxes=max_gt_boxes,
                                           scale_to_absolute=scale_to_absolute)
172
    metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
173
        eval_config, categories, eval_dict)
174
175
176
177
178
    _, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
    _, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']

    with self.test_session() as sess:
      metrics = {}
pkulzc's avatar
pkulzc committed
179
      for key, (value_op, _) in six.iteritems(metric_ops):
180
181
182
183
184
185
186
        metrics[key] = value_op
      sess.run(update_op_boxes)
      sess.run(update_op_masks)
      metrics = sess.run(metrics)
      self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
      self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])

187
188
189
190
191
192
  @parameterized.parameters(
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
  )
193
  @unittest.skipIf(tf_version.is_tf2(), 'Only compatible with TF1.X')
194
195
  def test_get_eval_metric_ops_for_coco_detections_and_resized_masks(
      self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
196
197
198
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'coco_mask_metrics'])
199
    categories = self._get_categories_list()
200
201
202
203
    eval_dict = self._make_evaluation_dict(batch_size=batch_size,
                                           max_gt_boxes=max_gt_boxes,
                                           scale_to_absolute=scale_to_absolute,
                                           resized_groundtruth_masks=True)
204
    metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
205
        eval_config, categories, eval_dict)
206
207
208
209
210
    _, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
    _, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']

    with self.test_session() as sess:
      metrics = {}
pkulzc's avatar
pkulzc committed
211
      for key, (value_op, _) in six.iteritems(metric_ops):
212
213
214
215
216
217
218
        metrics[key] = value_op
      sess.run(update_op_boxes)
      sess.run(update_op_masks)
      metrics = sess.run(metrics)
      self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
      self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])

219
  @unittest.skipIf(tf_version.is_tf2(), 'Only compatible with TF1.X')
220
  def test_get_eval_metric_ops_raises_error_with_unsupported_metric(self):
221
222
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(['unsupported_metric'])
223
224
225
226
    categories = self._get_categories_list()
    eval_dict = self._make_evaluation_dict()
    with self.assertRaises(ValueError):
      eval_util.get_eval_metric_ops_for_evaluators(
227
228
229
230
          eval_config, categories, eval_dict)

  def test_get_eval_metric_ops_for_evaluators(self):
    eval_config = eval_pb2.EvalConfig()
231
232
233
234
    eval_config.metrics_set.extend([
        'coco_detection_metrics', 'coco_mask_metrics',
        'precision_at_recall_detection_metrics'
    ])
235
    eval_config.include_metrics_per_category = True
236
237
    eval_config.recall_lower_bound = 0.2
    eval_config.recall_upper_bound = 0.6
238
239
240

    evaluator_options = eval_util.evaluator_options_from_eval_config(
        eval_config)
241
242
    self.assertTrue(evaluator_options['coco_detection_metrics']
                    ['include_metrics_per_category'])
243
244
    self.assertFalse(evaluator_options['coco_detection_metrics']
                     ['skip_predictions_for_unlabeled_class'])
245
246
247
248
249
250
251
252
    self.assertTrue(
        evaluator_options['coco_mask_metrics']['include_metrics_per_category'])
    self.assertAlmostEqual(
        evaluator_options['precision_at_recall_detection_metrics']
        ['recall_lower_bound'], eval_config.recall_lower_bound)
    self.assertAlmostEqual(
        evaluator_options['precision_at_recall_detection_metrics']
        ['recall_upper_bound'], eval_config.recall_upper_bound)
253
254
255

  def test_get_evaluator_with_evaluator_options(self):
    eval_config = eval_pb2.EvalConfig()
256
257
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
258
    eval_config.include_metrics_per_category = True
259
    eval_config.skip_predictions_for_unlabeled_class = True
260
261
    eval_config.recall_lower_bound = 0.2
    eval_config.recall_upper_bound = 0.6
262
263
264
265
    categories = self._get_categories_list()

    evaluator_options = eval_util.evaluator_options_from_eval_config(
        eval_config)
266
267
    evaluator = eval_util.get_evaluators(eval_config, categories,
                                         evaluator_options)
268
269

    self.assertTrue(evaluator[0]._include_metrics_per_category)
270
    self.assertTrue(evaluator[0]._skip_predictions_for_unlabeled_class)
271
272
273
274
    self.assertAlmostEqual(evaluator[1]._recall_lower_bound,
                           eval_config.recall_lower_bound)
    self.assertAlmostEqual(evaluator[1]._recall_upper_bound,
                           eval_config.recall_upper_bound)
275
276
277

  def test_get_evaluator_with_no_evaluator_options(self):
    eval_config = eval_pb2.EvalConfig()
278
279
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
280
    eval_config.include_metrics_per_category = True
281
282
    eval_config.recall_lower_bound = 0.2
    eval_config.recall_upper_bound = 0.6
283
284
285
286
    categories = self._get_categories_list()

    evaluator = eval_util.get_evaluators(
        eval_config, categories, evaluator_options=None)
287

288
    # Even though we are setting eval_config.include_metrics_per_category = True
289
290
    # and bounds on recall, these options are never passed into the
    # DetectionEvaluator constructor (via `evaluator_options`).
291
    self.assertFalse(evaluator[0]._include_metrics_per_category)
292
293
294
    self.assertAlmostEqual(evaluator[1]._recall_lower_bound, 0.0)
    self.assertAlmostEqual(evaluator[1]._recall_upper_bound, 1.0)

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
  def test_get_evaluator_with_keypoint_metrics(self):
    eval_config = eval_pb2.EvalConfig()
    person_keypoints_metric = eval_config.parameterized_metric.add()
    person_keypoints_metric.coco_keypoint_metrics.class_label = 'person'
    person_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
        'left_eye'] = 0.1
    person_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
        'right_eye'] = 0.2
    dog_keypoints_metric = eval_config.parameterized_metric.add()
    dog_keypoints_metric.coco_keypoint_metrics.class_label = 'dog'
    dog_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
        'tail_start'] = 0.3
    dog_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
        'mouth'] = 0.4
    categories = self._get_categories_list_with_keypoints()

    evaluator = eval_util.get_evaluators(
        eval_config, categories, evaluator_options=None)

    # Verify keypoint evaluator class variables.
    self.assertLen(evaluator, 3)
    self.assertFalse(evaluator[0]._include_metrics_per_category)
    self.assertEqual(evaluator[1]._category_name, 'person')
    self.assertEqual(evaluator[2]._category_name, 'dog')
    self.assertAllEqual(evaluator[1]._keypoint_ids, [0, 3])
    self.assertAllEqual(evaluator[2]._keypoint_ids, [1, 2])
    self.assertAllClose([0.1, 0.2], evaluator[1]._oks_sigmas)
    self.assertAllClose([0.3, 0.4], evaluator[2]._oks_sigmas)

  def test_get_evaluator_with_unmatched_label(self):
    eval_config = eval_pb2.EvalConfig()
    person_keypoints_metric = eval_config.parameterized_metric.add()
    person_keypoints_metric.coco_keypoint_metrics.class_label = 'unmatched'
    person_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
        'kpt'] = 0.1
    categories = self._get_categories_list_with_keypoints()

    evaluator = eval_util.get_evaluators(
        eval_config, categories, evaluator_options=None)
    self.assertLen(evaluator, 1)
    self.assertNotIsInstance(
        evaluator[0], coco_evaluation.CocoKeypointEvaluator)

338
339
340
341
342
343
344
345
  def test_padded_image_result_dict(self):

    input_data_fields = fields.InputDataFields
    detection_fields = fields.DetectionResultFields
    key = tf.constant([str(i) for i in range(2)])

    detection_boxes = np.array([[[0., 0., 1., 1.]], [[0.0, 0.0, 0.5, 0.5]]],
                               dtype=np.float32)
346
347
    detection_keypoints = np.array([[0.0, 0.0], [0.5, 0.5], [1.0, 1.0]],
                                   dtype=np.float32)
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    def graph_fn():
      detections = {
          detection_fields.detection_boxes:
              tf.constant(detection_boxes),
          detection_fields.detection_scores:
              tf.constant([[1.], [1.]]),
          detection_fields.detection_classes:
              tf.constant([[1], [2]]),
          detection_fields.num_detections:
              tf.constant([1, 1]),
          detection_fields.detection_keypoints:
              tf.tile(
                  tf.reshape(
                      tf.constant(detection_keypoints), shape=[1, 1, 3, 2]),
                  multiples=[2, 1, 1, 1])
      }

      gt_boxes = detection_boxes
      groundtruth = {
          input_data_fields.groundtruth_boxes:
              tf.constant(gt_boxes),
          input_data_fields.groundtruth_classes:
              tf.constant([[1.], [1.]]),
          input_data_fields.groundtruth_keypoints:
              tf.tile(
                  tf.reshape(
                      tf.constant(detection_keypoints), shape=[1, 1, 3, 2]),
                  multiples=[2, 1, 1, 1])
      }

      image = tf.zeros((2, 100, 100, 3), dtype=tf.float32)

      true_image_shapes = tf.constant([[100, 100, 3], [50, 100, 3]])
      original_image_spatial_shapes = tf.constant([[200, 200], [150, 300]])

      result = eval_util.result_dict_for_batched_example(
          image, key, detections, groundtruth,
          scale_to_absolute=True,
          true_image_shapes=true_image_shapes,
          original_image_spatial_shapes=original_image_spatial_shapes,
          max_gt_boxes=tf.constant(1))
      return (result[input_data_fields.groundtruth_boxes],
              result[input_data_fields.groundtruth_keypoints],
              result[detection_fields.detection_boxes],
              result[detection_fields.detection_keypoints])
    (gt_boxes, gt_keypoints, detection_boxes,
     detection_keypoints) = self.execute_cpu(graph_fn, [])
    self.assertAllEqual(
        [[[0., 0., 200., 200.]], [[0.0, 0.0, 150., 150.]]],
        gt_boxes)
    self.assertAllClose([[[[0., 0.], [100., 100.], [200., 200.]]],
                         [[[0., 0.], [150., 150.], [300., 300.]]]],
                        gt_keypoints)

    # Predictions from the model are not scaled.
    self.assertAllEqual(
        [[[0., 0., 200., 200.]], [[0.0, 0.0, 75., 150.]]],
        detection_boxes)
    self.assertAllClose([[[[0., 0.], [100., 100.], [200., 200.]]],
                         [[[0., 0.], [75., 150.], [150., 300.]]]],
                        detection_keypoints)
409

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
  def test_evaluator_options_from_eval_config_no_super_categories(self):
    eval_config_text_proto = """
      metrics_set: "coco_detection_metrics"
      metrics_set: "coco_mask_metrics"
      include_metrics_per_category: true
      use_moving_averages: false
      batch_size: 1;
    """
    eval_config = eval_pb2.EvalConfig()
    text_format.Merge(eval_config_text_proto, eval_config)
    evaluator_options = eval_util.evaluator_options_from_eval_config(
        eval_config)
    self.assertNotIn('super_categories', evaluator_options['coco_mask_metrics'])

  def test_evaluator_options_from_eval_config_with_super_categories(self):
    eval_config_text_proto = """
      metrics_set: "coco_detection_metrics"
      metrics_set: "coco_mask_metrics"
      include_metrics_per_category: true
      use_moving_averages: false
      batch_size: 1;
      super_categories {
        key: "supercat1"
        value: "a,b,c"
      }
      super_categories {
        key: "supercat2"
        value: "d,e,f"
      }
    """
    eval_config = eval_pb2.EvalConfig()
    text_format.Merge(eval_config_text_proto, eval_config)
    evaluator_options = eval_util.evaluator_options_from_eval_config(
        eval_config)
    self.assertIn('super_categories', evaluator_options['coco_mask_metrics'])
    super_categories = evaluator_options[
        'coco_mask_metrics']['super_categories']
    self.assertIn('supercat1', super_categories)
    self.assertIn('supercat2', super_categories)
    self.assertAllEqual(super_categories['supercat1'], ['a', 'b', 'c'])
    self.assertAllEqual(super_categories['supercat2'], ['d', 'e', 'f'])

452
453
454

if __name__ == '__main__':
  tf.test.main()