"git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "b691dcc49050268ce07f5d2610b64332d3d773f0"
eval_util_test.py 13.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for eval_util."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
from absl.testing import parameterized
22

23
import numpy as np
pkulzc's avatar
pkulzc committed
24
25
import six
from six.moves import range
26
import tensorflow as tf
27
28
29

from object_detection import eval_util
from object_detection.core import standard_fields as fields
30
from object_detection.protos import eval_pb2
31
from object_detection.utils import test_case
32
33


34
class EvalUtilTest(test_case.TestCase, parameterized.TestCase):
35
36

  def _get_categories_list(self):
37
38
39
    return [{'id': 1, 'name': 'person'},
            {'id': 2, 'name': 'dog'},
            {'id': 3, 'name': 'cat'}]
40

41
42
43
44
45
  def _make_evaluation_dict(self,
                            resized_groundtruth_masks=False,
                            batch_size=1,
                            max_gt_boxes=None,
                            scale_to_absolute=False):
46
47
48
    input_data_fields = fields.InputDataFields
    detection_fields = fields.DetectionResultFields

49
50
51
52
    image = tf.zeros(shape=[batch_size, 20, 20, 3], dtype=tf.uint8)
    if batch_size == 1:
      key = tf.constant('image1')
    else:
53
      key = tf.constant([str(i) for i in range(batch_size)])
54
55
56
57
58
59
60
    detection_boxes = tf.tile(tf.constant([[[0., 0., 1., 1.]]]),
                              multiples=[batch_size, 1, 1])
    detection_scores = tf.tile(tf.constant([[0.8]]), multiples=[batch_size, 1])
    detection_classes = tf.tile(tf.constant([[0]]), multiples=[batch_size, 1])
    detection_masks = tf.tile(tf.ones(shape=[1, 1, 20, 20], dtype=tf.float32),
                              multiples=[batch_size, 1, 1, 1])
    num_detections = tf.ones([batch_size])
61
62
63
    groundtruth_boxes = tf.constant([[0., 0., 1., 1.]])
    groundtruth_classes = tf.constant([1])
    groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8)
64
65
    if resized_groundtruth_masks:
      groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8)
66
67
68
69
70
71
72
73
74
75

    if batch_size > 1:
      groundtruth_boxes = tf.tile(tf.expand_dims(groundtruth_boxes, 0),
                                  multiples=[batch_size, 1, 1])
      groundtruth_classes = tf.tile(tf.expand_dims(groundtruth_classes, 0),
                                    multiples=[batch_size, 1])
      groundtruth_instance_masks = tf.tile(
          tf.expand_dims(groundtruth_instance_masks, 0),
          multiples=[batch_size, 1, 1, 1])

76
77
78
79
80
81
82
83
84
85
86
87
    detections = {
        detection_fields.detection_boxes: detection_boxes,
        detection_fields.detection_scores: detection_scores,
        detection_fields.detection_classes: detection_classes,
        detection_fields.detection_masks: detection_masks,
        detection_fields.num_detections: num_detections
    }
    groundtruth = {
        input_data_fields.groundtruth_boxes: groundtruth_boxes,
        input_data_fields.groundtruth_classes: groundtruth_classes,
        input_data_fields.groundtruth_instance_masks: groundtruth_instance_masks
    }
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    if batch_size > 1:
      return eval_util.result_dict_for_batched_example(
          image, key, detections, groundtruth,
          scale_to_absolute=scale_to_absolute,
          max_gt_boxes=max_gt_boxes)
    else:
      return eval_util.result_dict_for_single_example(
          image, key, detections, groundtruth,
          scale_to_absolute=scale_to_absolute)

  @parameterized.parameters(
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
  )
  def test_get_eval_metric_ops_for_coco_detections(self, batch_size=1,
                                                   max_gt_boxes=None,
                                                   scale_to_absolute=False):
107
108
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(['coco_detection_metrics'])
109
    categories = self._get_categories_list()
110
111
112
    eval_dict = self._make_evaluation_dict(batch_size=batch_size,
                                           max_gt_boxes=max_gt_boxes,
                                           scale_to_absolute=scale_to_absolute)
113
    metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
114
        eval_config, categories, eval_dict)
115
116
117
118
    _, update_op = metric_ops['DetectionBoxes_Precision/mAP']

    with self.test_session() as sess:
      metrics = {}
pkulzc's avatar
pkulzc committed
119
      for key, (value_op, _) in six.iteritems(metric_ops):
120
121
122
123
124
125
        metrics[key] = value_op
      sess.run(update_op)
      metrics = sess.run(metrics)
      self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
      self.assertNotIn('DetectionMasks_Precision/mAP', metrics)

126
127
128
129
130
131
132
133
  @parameterized.parameters(
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
  )
  def test_get_eval_metric_ops_for_coco_detections_and_masks(
      self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
134
135
136
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'coco_mask_metrics'])
137
    categories = self._get_categories_list()
138
139
140
    eval_dict = self._make_evaluation_dict(batch_size=batch_size,
                                           max_gt_boxes=max_gt_boxes,
                                           scale_to_absolute=scale_to_absolute)
141
    metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
142
        eval_config, categories, eval_dict)
143
144
145
146
147
    _, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
    _, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']

    with self.test_session() as sess:
      metrics = {}
pkulzc's avatar
pkulzc committed
148
      for key, (value_op, _) in six.iteritems(metric_ops):
149
150
151
152
153
154
155
        metrics[key] = value_op
      sess.run(update_op_boxes)
      sess.run(update_op_masks)
      metrics = sess.run(metrics)
      self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
      self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])

156
157
158
159
160
161
162
163
  @parameterized.parameters(
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
  )
  def test_get_eval_metric_ops_for_coco_detections_and_resized_masks(
      self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
164
165
166
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'coco_mask_metrics'])
167
    categories = self._get_categories_list()
168
169
170
171
    eval_dict = self._make_evaluation_dict(batch_size=batch_size,
                                           max_gt_boxes=max_gt_boxes,
                                           scale_to_absolute=scale_to_absolute,
                                           resized_groundtruth_masks=True)
172
    metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
173
        eval_config, categories, eval_dict)
174
175
176
177
178
    _, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
    _, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']

    with self.test_session() as sess:
      metrics = {}
pkulzc's avatar
pkulzc committed
179
      for key, (value_op, _) in six.iteritems(metric_ops):
180
181
182
183
184
185
186
187
        metrics[key] = value_op
      sess.run(update_op_boxes)
      sess.run(update_op_masks)
      metrics = sess.run(metrics)
      self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
      self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])

  def test_get_eval_metric_ops_raises_error_with_unsupported_metric(self):
188
189
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(['unsupported_metric'])
190
191
192
193
    categories = self._get_categories_list()
    eval_dict = self._make_evaluation_dict()
    with self.assertRaises(ValueError):
      eval_util.get_eval_metric_ops_for_evaluators(
194
195
196
197
          eval_config, categories, eval_dict)

  def test_get_eval_metric_ops_for_evaluators(self):
    eval_config = eval_pb2.EvalConfig()
198
199
200
201
    eval_config.metrics_set.extend([
        'coco_detection_metrics', 'coco_mask_metrics',
        'precision_at_recall_detection_metrics'
    ])
202
    eval_config.include_metrics_per_category = True
203
204
    eval_config.recall_lower_bound = 0.2
    eval_config.recall_upper_bound = 0.6
205
206
207

    evaluator_options = eval_util.evaluator_options_from_eval_config(
        eval_config)
208
209
210
211
212
213
214
215
216
217
    self.assertTrue(evaluator_options['coco_detection_metrics']
                    ['include_metrics_per_category'])
    self.assertTrue(
        evaluator_options['coco_mask_metrics']['include_metrics_per_category'])
    self.assertAlmostEqual(
        evaluator_options['precision_at_recall_detection_metrics']
        ['recall_lower_bound'], eval_config.recall_lower_bound)
    self.assertAlmostEqual(
        evaluator_options['precision_at_recall_detection_metrics']
        ['recall_upper_bound'], eval_config.recall_upper_bound)
218
219
220

  def test_get_evaluator_with_evaluator_options(self):
    eval_config = eval_pb2.EvalConfig()
221
222
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
223
    eval_config.include_metrics_per_category = True
224
225
    eval_config.recall_lower_bound = 0.2
    eval_config.recall_upper_bound = 0.6
226
227
228
229
    categories = self._get_categories_list()

    evaluator_options = eval_util.evaluator_options_from_eval_config(
        eval_config)
230
231
    evaluator = eval_util.get_evaluators(eval_config, categories,
                                         evaluator_options)
232
233

    self.assertTrue(evaluator[0]._include_metrics_per_category)
234
235
236
237
    self.assertAlmostEqual(evaluator[1]._recall_lower_bound,
                           eval_config.recall_lower_bound)
    self.assertAlmostEqual(evaluator[1]._recall_upper_bound,
                           eval_config.recall_upper_bound)
238
239
240

  def test_get_evaluator_with_no_evaluator_options(self):
    eval_config = eval_pb2.EvalConfig()
241
242
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
243
    eval_config.include_metrics_per_category = True
244
245
    eval_config.recall_lower_bound = 0.2
    eval_config.recall_upper_bound = 0.6
246
247
248
249
    categories = self._get_categories_list()

    evaluator = eval_util.get_evaluators(
        eval_config, categories, evaluator_options=None)
250

251
    # Even though we are setting eval_config.include_metrics_per_category = True
252
253
    # and bounds on recall, these options are never passed into the
    # DetectionEvaluator constructor (via `evaluator_options`).
254
    self.assertFalse(evaluator[0]._include_metrics_per_category)
255
256
257
    self.assertAlmostEqual(evaluator[1]._recall_lower_bound, 0.0)
    self.assertAlmostEqual(evaluator[1]._recall_upper_bound, 1.0)

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
  def test_padded_image_result_dict(self):

    input_data_fields = fields.InputDataFields
    detection_fields = fields.DetectionResultFields
    key = tf.constant([str(i) for i in range(2)])

    detection_boxes = np.array([[[0., 0., 1., 1.]], [[0.0, 0.0, 0.5, 0.5]]],
                               dtype=np.float32)
    detections = {
        detection_fields.detection_boxes:
            tf.constant(detection_boxes),
        detection_fields.detection_scores:
            tf.constant([[1.], [1.]]),
        detection_fields.detection_classes:
            tf.constant([[1], [2]]),
        detection_fields.num_detections:
            tf.constant([1, 1])
    }

    gt_boxes = detection_boxes
    groundtruth = {
        input_data_fields.groundtruth_boxes:
            tf.constant(gt_boxes),
        input_data_fields.groundtruth_classes:
            tf.constant([[1.], [1.]]),
    }

    image = tf.zeros((2, 100, 100, 3), dtype=tf.float32)

    true_image_shapes = tf.constant([[100, 100, 3], [50, 100, 3]])
    original_image_spatial_shapes = tf.constant([[200, 200], [150, 300]])

    result = eval_util.result_dict_for_batched_example(
        image, key, detections, groundtruth,
        scale_to_absolute=True,
        true_image_shapes=true_image_shapes,
        original_image_spatial_shapes=original_image_spatial_shapes,
        max_gt_boxes=tf.constant(1))

    with self.test_session() as sess:
      result = sess.run(result)
      self.assertAllEqual(
          [[[0., 0., 200., 200.]], [[0.0, 0.0, 150., 150.]]],
          result[input_data_fields.groundtruth_boxes])

      # Predictions from the model are not scaled.
      self.assertAllEqual(
          [[[0., 0., 200., 200.]], [[0.0, 0.0, 75., 150.]]],
          result[detection_fields.detection_boxes])

308
309
310

if __name__ == '__main__':
  tf.test.main()