eval_util_test.py 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for eval_util."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
from absl.testing import parameterized
22

23
import tensorflow as tf
24
25
26

from object_detection import eval_util
from object_detection.core import standard_fields as fields
27
from object_detection.protos import eval_pb2
28
from object_detection.utils import test_case
29
30


31
class EvalUtilTest(test_case.TestCase, parameterized.TestCase):
32
33
34
35
36
37

  def _get_categories_list(self):
    return [{'id': 0, 'name': 'person'},
            {'id': 1, 'name': 'dog'},
            {'id': 2, 'name': 'cat'}]

38
39
40
41
42
  def _make_evaluation_dict(self,
                            resized_groundtruth_masks=False,
                            batch_size=1,
                            max_gt_boxes=None,
                            scale_to_absolute=False):
43
44
45
    input_data_fields = fields.InputDataFields
    detection_fields = fields.DetectionResultFields

46
47
48
49
    image = tf.zeros(shape=[batch_size, 20, 20, 3], dtype=tf.uint8)
    if batch_size == 1:
      key = tf.constant('image1')
    else:
50
      key = tf.constant([str(i) for i in range(batch_size)])
51
52
53
54
55
56
57
    detection_boxes = tf.tile(tf.constant([[[0., 0., 1., 1.]]]),
                              multiples=[batch_size, 1, 1])
    detection_scores = tf.tile(tf.constant([[0.8]]), multiples=[batch_size, 1])
    detection_classes = tf.tile(tf.constant([[0]]), multiples=[batch_size, 1])
    detection_masks = tf.tile(tf.ones(shape=[1, 1, 20, 20], dtype=tf.float32),
                              multiples=[batch_size, 1, 1, 1])
    num_detections = tf.ones([batch_size])
58
59
60
    groundtruth_boxes = tf.constant([[0., 0., 1., 1.]])
    groundtruth_classes = tf.constant([1])
    groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8)
61
62
    if resized_groundtruth_masks:
      groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8)
63
64
65
66
67
68
69
70
71
72

    if batch_size > 1:
      groundtruth_boxes = tf.tile(tf.expand_dims(groundtruth_boxes, 0),
                                  multiples=[batch_size, 1, 1])
      groundtruth_classes = tf.tile(tf.expand_dims(groundtruth_classes, 0),
                                    multiples=[batch_size, 1])
      groundtruth_instance_masks = tf.tile(
          tf.expand_dims(groundtruth_instance_masks, 0),
          multiples=[batch_size, 1, 1, 1])

73
74
75
76
77
78
79
80
81
82
83
84
    detections = {
        detection_fields.detection_boxes: detection_boxes,
        detection_fields.detection_scores: detection_scores,
        detection_fields.detection_classes: detection_classes,
        detection_fields.detection_masks: detection_masks,
        detection_fields.num_detections: num_detections
    }
    groundtruth = {
        input_data_fields.groundtruth_boxes: groundtruth_boxes,
        input_data_fields.groundtruth_classes: groundtruth_classes,
        input_data_fields.groundtruth_instance_masks: groundtruth_instance_masks
    }
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    if batch_size > 1:
      return eval_util.result_dict_for_batched_example(
          image, key, detections, groundtruth,
          scale_to_absolute=scale_to_absolute,
          max_gt_boxes=max_gt_boxes)
    else:
      return eval_util.result_dict_for_single_example(
          image, key, detections, groundtruth,
          scale_to_absolute=scale_to_absolute)

  @parameterized.parameters(
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
  )
  def test_get_eval_metric_ops_for_coco_detections(self, batch_size=1,
                                                   max_gt_boxes=None,
                                                   scale_to_absolute=False):
104
105
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(['coco_detection_metrics'])
106
    categories = self._get_categories_list()
107
108
109
    eval_dict = self._make_evaluation_dict(batch_size=batch_size,
                                           max_gt_boxes=max_gt_boxes,
                                           scale_to_absolute=scale_to_absolute)
110
    metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
111
        eval_config, categories, eval_dict)
112
113
114
115
116
117
118
119
120
121
122
    _, update_op = metric_ops['DetectionBoxes_Precision/mAP']

    with self.test_session() as sess:
      metrics = {}
      for key, (value_op, _) in metric_ops.iteritems():
        metrics[key] = value_op
      sess.run(update_op)
      metrics = sess.run(metrics)
      self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
      self.assertNotIn('DetectionMasks_Precision/mAP', metrics)

123
124
125
126
127
128
129
130
  @parameterized.parameters(
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
  )
  def test_get_eval_metric_ops_for_coco_detections_and_masks(
      self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
131
132
133
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'coco_mask_metrics'])
134
    categories = self._get_categories_list()
135
136
137
    eval_dict = self._make_evaluation_dict(batch_size=batch_size,
                                           max_gt_boxes=max_gt_boxes,
                                           scale_to_absolute=scale_to_absolute)
138
    metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
139
        eval_config, categories, eval_dict)
140
141
142
143
144
145
146
147
148
149
150
151
152
    _, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
    _, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']

    with self.test_session() as sess:
      metrics = {}
      for key, (value_op, _) in metric_ops.iteritems():
        metrics[key] = value_op
      sess.run(update_op_boxes)
      sess.run(update_op_masks)
      metrics = sess.run(metrics)
      self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
      self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])

153
154
155
156
157
158
159
160
  @parameterized.parameters(
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
      {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
      {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
  )
  def test_get_eval_metric_ops_for_coco_detections_and_resized_masks(
      self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
161
162
163
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'coco_mask_metrics'])
164
    categories = self._get_categories_list()
165
166
167
168
    eval_dict = self._make_evaluation_dict(batch_size=batch_size,
                                           max_gt_boxes=max_gt_boxes,
                                           scale_to_absolute=scale_to_absolute,
                                           resized_groundtruth_masks=True)
169
    metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
170
        eval_config, categories, eval_dict)
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    _, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
    _, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']

    with self.test_session() as sess:
      metrics = {}
      for key, (value_op, _) in metric_ops.iteritems():
        metrics[key] = value_op
      sess.run(update_op_boxes)
      sess.run(update_op_masks)
      metrics = sess.run(metrics)
      self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
      self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])

  def test_get_eval_metric_ops_raises_error_with_unsupported_metric(self):
185
186
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(['unsupported_metric'])
187
188
189
190
    categories = self._get_categories_list()
    eval_dict = self._make_evaluation_dict()
    with self.assertRaises(ValueError):
      eval_util.get_eval_metric_ops_for_evaluators(
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
          eval_config, categories, eval_dict)

  def test_get_eval_metric_ops_for_evaluators(self):
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(
        ['coco_detection_metrics', 'coco_mask_metrics'])
    eval_config.include_metrics_per_category = True

    evaluator_options = eval_util.evaluator_options_from_eval_config(
        eval_config)
    self.assertTrue(evaluator_options['coco_detection_metrics'][
        'include_metrics_per_category'])
    self.assertTrue(evaluator_options['coco_mask_metrics'][
        'include_metrics_per_category'])

  def test_get_evaluator_with_evaluator_options(self):
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(['coco_detection_metrics'])
    eval_config.include_metrics_per_category = True
    categories = self._get_categories_list()

    evaluator_options = eval_util.evaluator_options_from_eval_config(
        eval_config)
    evaluator = eval_util.get_evaluators(
        eval_config, categories, evaluator_options)

    self.assertTrue(evaluator[0]._include_metrics_per_category)

  def test_get_evaluator_with_no_evaluator_options(self):
    eval_config = eval_pb2.EvalConfig()
    eval_config.metrics_set.extend(['coco_detection_metrics'])
    eval_config.include_metrics_per_category = True
    categories = self._get_categories_list()

    evaluator = eval_util.get_evaluators(
        eval_config, categories, evaluator_options=None)
227

228
229
230
231
    # Even though we are setting eval_config.include_metrics_per_category = True
    # this option is never passed into the DetectionEvaluator constructor (via
    # `evaluator_options`).
    self.assertFalse(evaluator[0]._include_metrics_per_category)
232
233
234

if __name__ == '__main__':
  tf.test.main()