transformer.py 24.1 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based transformer block layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

Chen Chen's avatar
Chen Chen committed
22
import gin
Hongkun Yu's avatar
Hongkun Yu committed
23
24
25
import tensorflow as tf

from official.nlp.modeling.layers import attention
26
from official.nlp.modeling.layers import multi_channel_attention
27
from official.nlp.modeling.layers.util import tf_function_if_eager
Hongkun Yu's avatar
Hongkun Yu committed
28
29
30
31
32
33
34
35
36


@tf.keras.utils.register_keras_serializable(package="Text")
class Transformer(tf.keras.layers.Layer):
  """Transformer layer.

  This layer implements the Transformer from "Attention Is All You Need".
  (https://arxiv.org/abs/1706.03762).

37
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
38
39
40
41
42
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
43
44
    output_range: the sequence output range, [0, output_range) by slicing the
      target sequence. `None` means the target sequence is not sliced.
Hongkun Yu's avatar
Hongkun Yu committed
45
46
47
48
49
50
51
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
52
53
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
54
    norm_first: Whether to normalize inputs to attention and intermediate dense
55
56
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
57
    norm_epsilon: Epsilon value to initialize normalization layers.
58
    intermediate_dropout: Dropout probability for intermediate_dropout_layer.
xinliupitt's avatar
xinliupitt committed
59
60
    attention_initializer: Initializer for kernels of attention layers. If set
      `None`, attention layers use kernel_initializer as initializer for kernel.
Hongkun Yu's avatar
Hongkun Yu committed
61
62
63
64
65
66
67
68
  """

  def __init__(self,
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
69
               output_range=None,
Hongkun Yu's avatar
Hongkun Yu committed
70
71
72
73
74
75
76
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
77
78
79
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
80
               intermediate_dropout=0.0,
xinliupitt's avatar
xinliupitt committed
81
               attention_initializer=None,
Hongkun Yu's avatar
Hongkun Yu committed
82
83
84
85
86
87
88
89
               **kwargs):
    super(Transformer, self).__init__(**kwargs)

    self._num_heads = num_attention_heads
    self._intermediate_size = intermediate_size
    self._intermediate_activation = intermediate_activation
    self._attention_dropout_rate = attention_dropout_rate
    self._dropout_rate = dropout_rate
90
    self._output_range = output_range
Hongkun Yu's avatar
Hongkun Yu committed
91
92
93
94
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
Hongkun Yu's avatar
Hongkun Yu committed
95
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
Hongkun Yu's avatar
Hongkun Yu committed
96
97
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
98
99
100
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
xinliupitt's avatar
xinliupitt committed
101
    self._intermediate_dropout = intermediate_dropout
xinliupitt's avatar
xinliupitt committed
102
    if attention_initializer:
xinliupitt's avatar
xinliupitt committed
103
104
      self._attention_initializer = tf.keras.initializers.get(
          attention_initializer)
xinliupitt's avatar
xinliupitt committed
105
106
    else:
      self._attention_initializer = self._kernel_initializer
Hongkun Yu's avatar
Hongkun Yu committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

  def build(self, input_shape):
    input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape
    input_tensor_shape = tf.TensorShape(input_tensor)
    if len(input_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    batch_size, sequence_length, hidden_size = input_tensor_shape

    if len(input_shape) == 2:
      mask_tensor_shape = tf.TensorShape(input_shape[1])
      expected_mask_tensor_shape = tf.TensorShape(
          [batch_size, sequence_length, sequence_length])
      if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape):
        raise ValueError("When passing a mask tensor to TransformerLayer, the "
                         "mask tensor must be of shape [batch, "
                         "sequence_length, sequence_length] (here %s). Got a "
                         "mask tensor of shape %s." %
                         (expected_mask_tensor_shape, mask_tensor_shape))
    if hidden_size % self._num_heads != 0:
      raise ValueError(
          "The input size (%d) is not a multiple of the number of attention "
          "heads (%d)" % (hidden_size, self._num_heads))
    self._attention_head_size = int(hidden_size // self._num_heads)
131
    common_kwargs = dict(
Hongkun Yu's avatar
Hongkun Yu committed
132
133
134
135
136
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
137
        bias_constraint=self._bias_constraint)
138
    self._attention_layer = tf.keras.layers.MultiHeadAttention(
139
        num_heads=self._num_heads,
140
        key_dim=self._attention_head_size,
141
        dropout=self._attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
142
        use_bias=self._use_bias,
xinliupitt's avatar
xinliupitt committed
143
        kernel_initializer=self._attention_initializer,
144
145
        name="self_attention",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
146
    self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
147
148
    # Use float32 in layernorm for numeric stability.
    # It is probably safe in mixed_float16, but we haven't validated this yet.
Hongkun Yu's avatar
Hongkun Yu committed
149
150
    self._attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
Chen Chen's avatar
Chen Chen committed
151
152
            name="self_attention_layer_norm",
            axis=-1,
xinliupitt's avatar
xinliupitt committed
153
            epsilon=self._norm_epsilon,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
154
            dtype=tf.float32))
155
156
157
158
    self._intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self._intermediate_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
159
        kernel_initializer=self._kernel_initializer,
160
161
        name="intermediate",
        **common_kwargs)
162
163
164
165
166
167
    policy = tf.keras.mixed_precision.experimental.global_policy()
    if policy.name == "mixed_bfloat16":
      # bfloat16 causes BERT with the LAMB optimizer to not converge
      # as well, so we use float32.
      # TODO(b/154538392): Investigate this.
      policy = tf.float32
Chen Chen's avatar
Chen Chen committed
168
    self._intermediate_activation_layer = tf.keras.layers.Activation(
169
        self._intermediate_activation, dtype=policy)
170
171
    self._intermediate_dropout_layer = tf.keras.layers.Dropout(
        rate=self._intermediate_dropout)
172
173
174
175
176
    self._output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
xinliupitt's avatar
xinliupitt committed
177
        kernel_initializer=self._kernel_initializer,
178
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
179
    self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
180
    # Use float32 in layernorm for numeric stability.
Hongkun Yu's avatar
Hongkun Yu committed
181
    self._output_layer_norm = tf.keras.layers.LayerNormalization(
182
183
184
        name="output_layer_norm",
        axis=-1,
        epsilon=self._norm_epsilon,
xinliupitt's avatar
xinliupitt committed
185
        dtype=tf.float32)
Hongkun Yu's avatar
Hongkun Yu committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

    super(Transformer, self).build(input_shape)

  def get_config(self):
    config = {
        "num_attention_heads":
            self._num_heads,
        "intermediate_size":
            self._intermediate_size,
        "intermediate_activation":
            self._intermediate_activation,
        "dropout_rate":
            self._dropout_rate,
        "attention_dropout_rate":
            self._attention_dropout_rate,
201
202
        "output_range":
            self._output_range,
Hongkun Yu's avatar
Hongkun Yu committed
203
204
205
206
207
208
209
210
211
212
213
214
215
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
xinliupitt's avatar
xinliupitt committed
216
217
218
219
220
221
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
xinliupitt's avatar
xinliupitt committed
222
223
            self._norm_epsilon,
        "intermediate_dropout":
xinliupitt's avatar
xinliupitt committed
224
225
            self._intermediate_dropout,
        "attention_initializer":
xinliupitt's avatar
xinliupitt committed
226
            tf.keras.initializers.serialize(self._attention_initializer)
Hongkun Yu's avatar
Hongkun Yu committed
227
228
229
230
231
232
233
234
235
236
    }
    base_config = super(Transformer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    if isinstance(inputs, (list, tuple)) and len(inputs) == 2:
      input_tensor, attention_mask = inputs
    else:
      input_tensor, attention_mask = (inputs, None)

237
238
239
240
    if self._output_range:
      target_tensor = input_tensor[:, 0:self._output_range, :]
      attention_mask = attention_mask[:, 0:self._output_range, :]
    else:
xinliupitt's avatar
xinliupitt committed
241
242
243
      if self._norm_first:
        source_tensor = input_tensor
        input_tensor = self._attention_layer_norm(input_tensor)
244
      target_tensor = input_tensor
Hongkun Yu's avatar
Hongkun Yu committed
245

246
247
    attention_output = self._attention_layer(
        query=target_tensor, value=input_tensor, attention_mask=attention_mask)
248
    attention_output = self._attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
249
250
251
252
253
254
255
256
    if self._norm_first:
      attention_output = source_tensor + attention_output
    else:
      attention_output = self._attention_layer_norm(target_tensor +
                                                    attention_output)
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self._output_layer_norm(attention_output)
257
258
259
    intermediate_output = self._intermediate_dense(attention_output)
    intermediate_output = self._intermediate_activation_layer(
        intermediate_output)
260
    intermediate_output = self._intermediate_dropout_layer(intermediate_output)
261
262
263
264
265
266
    layer_output = self._output_dense(intermediate_output)
    layer_output = self._output_dropout(layer_output)
    # During mixed precision training, attention_output is from layer norm and
    # is always fp32 for now. Cast layer_output to fp32 for the subsequent
    # add.
    layer_output = tf.cast(layer_output, tf.float32)
xinliupitt's avatar
xinliupitt committed
267
268
269
270
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self._output_layer_norm(layer_output + attention_output)
271
272

    return layer_output
273
274


Chen Chen's avatar
Chen Chen committed
275
276
@tf.keras.utils.register_keras_serializable(package="Text")
@gin.configurable
277
278
279
280
281
class CompiledTransformer(Transformer):

  @tf_function_if_eager(experimental_compile=True)
  def call(self, inputs):
    return super(CompiledTransformer, self).call(inputs)
282
283
284
285
286
287
288
289
290
291


@tf.keras.utils.register_keras_serializable(package="Text")
class TransformerDecoderLayer(tf.keras.layers.Layer):
  """Single transformer layer for decoder.

  It has three sub-layers:
  (1) a multi-head self-attention mechanism.
  (2) a encoder-decoder attention.
  (3) a positionwise fully connected feed-forward network.
Hongkun Yu's avatar
Hongkun Yu committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

  Arguments:
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
    multi_channel_cross_attention: Whether to use `MultiChannelAttention` for
      cross-attention between target sequences and source sequences.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
308
309
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
310
    norm_first: Whether to normalize inputs to attention and intermediate dense
311
312
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
313
    norm_epsilon: Epsilon value to initialize normalization layers.
314
    intermediate_dropout: Dropout probability for intermediate_dropout_layer.
xinliupitt's avatar
xinliupitt committed
315
316
    attention_initializer: Initializer for kernels of attention layers. If set
      `None`, attention layers use kernel_initializer as initializer for kernel.
317
318
319
  """

  def __init__(self,
Hongkun Yu's avatar
Hongkun Yu committed
320
321
322
323
324
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
325
               multi_channel_cross_attention=False,
Hongkun Yu's avatar
Hongkun Yu committed
326
327
328
329
330
331
332
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
333
334
335
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
336
               intermediate_dropout=0.0,
xinliupitt's avatar
xinliupitt committed
337
               attention_initializer=None,
338
339
340
341
342
343
               **kwargs):
    super(TransformerDecoderLayer, self).__init__(**kwargs)
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
    self.intermediate_activation = tf.keras.activations.get(
        intermediate_activation)
Hongkun Yu's avatar
Hongkun Yu committed
344
345
    self.dropout_rate = dropout_rate
    self.attention_dropout_rate = attention_dropout_rate
346
    self.multi_channel_cross_attention = multi_channel_cross_attention
Hongkun Yu's avatar
Hongkun Yu committed
347
348
349
350
351
352
353
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
354
355
356
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
xinliupitt's avatar
xinliupitt committed
357
    self._intermediate_dropout = intermediate_dropout
xinliupitt's avatar
xinliupitt committed
358
    if attention_initializer:
xinliupitt's avatar
xinliupitt committed
359
360
      self._attention_initializer = tf.keras.initializers.get(
          attention_initializer)
xinliupitt's avatar
xinliupitt committed
361
362
    else:
      self._attention_initializer = self._kernel_initializer
363
364
365
366
367
    if self.multi_channel_cross_attention:
      self._cross_attention_cls = multi_channel_attention.MultiChannelAttention
    else:
      self._cross_attention_cls = attention.MultiHeadAttention

Hongkun Yu's avatar
Hongkun Yu committed
368
369
370
371
372
373
374
  def build(self, input_shape):
    target_tensor_shape = tf.TensorShape(input_shape[0])
    if len(target_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    hidden_size = target_tensor_shape[2]
    if hidden_size % self.num_attention_heads != 0:
375
376
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
Hongkun Yu's avatar
Hongkun Yu committed
377
378
          "heads (%d)" % (hidden_size, self.num_attention_heads))
    self.attention_head_size = int(hidden_size / self.num_attention_heads)
379
    common_kwargs = dict(
380
        bias_initializer=self._bias_initializer,
Hongkun Yu's avatar
Hongkun Yu committed
381
382
383
384
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
385
386
387
388
        bias_constraint=self._bias_constraint)
    # Self attention.
    self.self_attention = attention.CachedAttention(
        num_heads=self.num_attention_heads,
389
        key_dim=self.attention_head_size,
390
        dropout=self.attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
391
        use_bias=self._use_bias,
xinliupitt's avatar
xinliupitt committed
392
        kernel_initializer=self._attention_initializer,
393
394
395
396
397
398
        name="self_attention",
        **common_kwargs)
    self.self_attention_output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
399
        kernel_initializer=self._kernel_initializer,
400
401
        name="output",
        **common_kwargs)
402
    self.self_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
403
        rate=self.dropout_rate)
404
405
    self.self_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
406
            name="self_attention_layer_norm",
407
408
            axis=-1,
            epsilon=self._norm_epsilon))
409
410
411
    # Encoder-decoder attention.
    self.encdec_attention = self._cross_attention_cls(
        num_heads=self.num_attention_heads,
412
        key_dim=self.attention_head_size,
Hongkun Yu's avatar
Hongkun Yu committed
413
414
        dropout=self.attention_dropout_rate,
        output_shape=hidden_size,
xinliupitt's avatar
xinliupitt committed
415
        use_bias=self._use_bias,
xinliupitt's avatar
xinliupitt committed
416
        kernel_initializer=self._attention_initializer,
417
418
        name="attention/encdec",
        **common_kwargs)
419
420

    self.encdec_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
421
        rate=self.dropout_rate)
422
423
    self.encdec_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
424
            name="attention/encdec_output_layer_norm",
425
426
            axis=-1,
            epsilon=self._norm_epsilon))
427
428

    # Feed-forward projection.
429
430
431
432
    self.intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self.intermediate_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
433
        kernel_initializer=self._kernel_initializer,
434
435
        name="intermediate",
        **common_kwargs)
436
437
    self.intermediate_activation_layer = tf.keras.layers.Activation(
        self.intermediate_activation)
438
439
    self._intermediate_dropout_layer = tf.keras.layers.Dropout(
        rate=self._intermediate_dropout)
440
441
442
443
    self.output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
444
        kernel_initializer=self._kernel_initializer,
445
446
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
447
    self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
448
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
449
        name="output_layer_norm", axis=-1, epsilon=self._norm_epsilon)
450
451
    super(TransformerDecoderLayer, self).build(input_shape)

xinliupitt's avatar
xinliupitt committed
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
  def get_config(self):
    config = {
        "num_attention_heads":
            self.num_attention_heads,
        "intermediate_size":
            self.intermediate_size,
        "intermediate_activation":
            self.intermediate_activation,
        "dropout_rate":
            self.dropout_rate,
        "attention_dropout_rate":
            self.attention_dropout_rate,
        "multi_channel_cross_attention":
            self.multi_channel_cross_attention,
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
xinliupitt's avatar
xinliupitt committed
485
486
            self._norm_epsilon,
        "intermediate_dropout":
xinliupitt's avatar
xinliupitt committed
487
488
            self._intermediate_dropout,
        "attention_initializer":
xinliupitt's avatar
xinliupitt committed
489
            tf.keras.initializers.serialize(self._attention_initializer)
xinliupitt's avatar
xinliupitt committed
490
491
492
493
    }
    base_config = super(TransformerDecoderLayer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
  def common_layers_with_encoder(self):
    """Gets layer objects that can make a Transformer encoder block."""
    return [
        self.self_attention, self.self_attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_layer_norm
    ]

  def call(self, inputs, cache=None, decode_loop_step=None):
    if self.multi_channel_cross_attention:
      if len(inputs) != 5:
        raise ValueError(
            "TransformerDecoderLayer must have 5 inputs, when it uses "
            "multi_channel_cross_attention. But it got: %d" % len(inputs))
    elif len(inputs) != 4:
      raise ValueError(
          "TransformerDecoderLayer must have 4 inputs, but it got: %d" %
          len(inputs))
    input_tensor, memory, attention_mask, self_attention_mask = inputs[:4]
xinliupitt's avatar
xinliupitt committed
512
513
514
    source_tensor = input_tensor
    if self._norm_first:
      input_tensor = self.self_attention_layer_norm(input_tensor)
515
    self_attention_output, cache = self.self_attention(
516
517
        query=input_tensor,
        value=input_tensor,
518
519
520
521
        attention_mask=self_attention_mask,
        cache=cache,
        decode_loop_step=decode_loop_step)
    self_attention_output = self.self_attention_dropout(self_attention_output)
xinliupitt's avatar
xinliupitt committed
522
523
524
525
526
527
528
529
530
    if self._norm_first:
      self_attention_output = source_tensor + self_attention_output
    else:
      self_attention_output = self.self_attention_layer_norm(
          input_tensor + self_attention_output)
    if self._norm_first:
      source_self_attention_output = self_attention_output
      self_attention_output = self.encdec_attention_layer_norm(
          self_attention_output)
531
532
533
534
    cross_attn_inputs = dict(
        query=self_attention_output,
        value=memory,
        attention_mask=attention_mask)
535
536
    if self.multi_channel_cross_attention:
      # Accesses the 5-th input tensor for the doc-attention probabilities.
537
538
      cross_attn_inputs["context_attention_weights"] = inputs[-1]
    attention_output = self.encdec_attention(**cross_attn_inputs)
539
    attention_output = self.encdec_attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
540
541
542
543
    if self._norm_first:
      attention_output = source_self_attention_output + attention_output
    else:
      attention_output = self.encdec_attention_layer_norm(
544
          self_attention_output + attention_output)
xinliupitt's avatar
xinliupitt committed
545
546
547
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self.output_layer_norm(attention_output)
548
549
550
551

    intermediate_output = self.intermediate_dense(attention_output)
    intermediate_output = self.intermediate_activation_layer(
        intermediate_output)
552
    intermediate_output = self._intermediate_dropout_layer(intermediate_output)
553
554
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
xinliupitt's avatar
xinliupitt committed
555
556
557
558
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self.output_layer_norm(layer_output + attention_output)
559
    return layer_output, cache