"official/utils/logs/benchmark_uploader.py" did not exist on "932364b62091aade23a586abdae989290be7fe72"
bert_squad_benchmark.py 12.1 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.bert import run_squad
from official.bert.benchmark import benchmark_utils
33
from official.bert.benchmark import squad_evaluate_v1_1
davidmochen's avatar
davidmochen committed
34
35
36
from official.utils.misc import distribution_utils

# pylint: disable=line-too-long
37
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_model.ckpt'
davidmochen's avatar
davidmochen committed
38
39
40
41
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
SQUAD_SMALL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_small_meta_data'
42
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
davidmochen's avatar
davidmochen committed
43
44
45
46
47
48
49
50
51
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_config'
# pylint: enable=line-too-long

FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

52
53
54
55
56
  def _read_training_summary_from_file(self):
    """Reads the training summary from a file."""
    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
57

58
59
60
61
  def _read_input_meta_data_from_file(self):
    """Reads the input metadata from a file."""
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
62

63
64
  def _read_predictions_dataset_from_file(self):
    """Reads the predictions dataset from a file."""
65
66
    with tf.io.gfile.GFile(SQUAD_PREDICT_FILE, 'r') as reader:
      dataset_json = json.load(reader)
67
      return dataset_json['data']
68

69
70
71
  def _read_predictions_from_file(self):
    """Reads the predictions from a file."""
    predictions_file = os.path.join(FLAGS.model_dir, 'predictions.json')
72
    with tf.io.gfile.GFile(predictions_file, 'r') as reader:
73
      return json.load(reader)
74

75
  def _get_distribution_strategy(self, use_ds=True):
76
77
    """Gets the distribution strategy."""
    return distribution_utils.get_distribution_strategy(
78
79
        distribution_strategy='mirrored' if use_ds else 'off',
        num_gpus=self.num_gpus)
80

davidmochen's avatar
davidmochen committed
81
  @flagsaver.flagsaver
82
  def _train_squad(self, use_ds=True, run_eagerly=False):
83
    """Runs BERT SQuAD training."""
84
    assert tf.version.VERSION.startswith('2.')
85
    input_meta_data = self._read_input_meta_data_from_file()
86
    strategy = self._get_distribution_strategy(use_ds)
davidmochen's avatar
davidmochen committed
87
88
89
90

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
91
        run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
92
        custom_callbacks=[self.timer_callback])
93
94

  @flagsaver.flagsaver
95
  def _evaluate_squad(self, use_ds=True):
96
    """Runs BERT SQuAD evaluation."""
97
    assert tf.version.VERSION.startswith('2.')
98
    input_meta_data = self._read_input_meta_data_from_file()
99
    strategy = self._get_distribution_strategy(use_ds)
100

101
    run_squad.predict_squad(strategy=strategy, input_meta_data=input_meta_data)
102
103
104
105
106

    dataset = self._read_predictions_dataset_from_file()
    predictions = self._read_predictions_from_file()

    eval_metrics = squad_evaluate_v1_1.evaluate(dataset, predictions)
107
108
    # Use F1 score as reported evaluation metric.
    self.eval_metrics = eval_metrics['f1']
davidmochen's avatar
davidmochen committed
109
110


111
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
davidmochen's avatar
davidmochen committed
112
113
114
115
116
117
118
119
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu` format.
  """

  def __init__(self, output_dir=None, **kwargs):
120
    super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir)
davidmochen's avatar
davidmochen committed
121
122

  def _setup(self):
123
124
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadBenchmarkReal, self)._setup()
davidmochen's avatar
davidmochen committed
125
126
127
128
129
130
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_SMALL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
131
    FLAGS.steps_per_loop = 1
davidmochen's avatar
davidmochen committed
132

133
134
135
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
136
    """Runs the benchmark and reports various metrics."""
137
    start_time_sec = time.time()
138
    self._train_squad(use_ds=use_ds, run_eagerly=run_eagerly)
139
140
141
142
143
144
145
146
147
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()

    super(BertSquadBenchmarkReal, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)
davidmochen's avatar
davidmochen committed
148
149

  def benchmark_1_gpu(self):
150
    """Tests BERT SQuAD model performance with 1 GPU."""
davidmochen's avatar
davidmochen committed
151
152
153
154
155
156

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
    FLAGS.train_batch_size = 4

157
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
158

159
160
161
162
163
164
  def benchmark_1_gpu_xla(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
165
166
    # XLA runs out of memory when running with batch size 4.
    FLAGS.train_batch_size = 3
167
    FLAGS.enable_xla = True
168

169
    self._run_and_report_benchmark()
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU without DS."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
    FLAGS.train_batch_size = 4

    self._run_and_report_benchmark(use_ds=False)

  def benchmark_1_gpu_eager_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_eager_no_dist_strat_squad')
    FLAGS.train_batch_size = 4

    self._run_and_report_benchmark(use_ds=False, run_eagerly=True)

davidmochen's avatar
davidmochen committed
192
  def benchmark_2_gpu(self):
193
    """Tests BERT SQuAD model performance with 2 GPUs."""
davidmochen's avatar
davidmochen committed
194
195
196
197
198
199

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad')
    FLAGS.train_batch_size = 8

200
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
201
202

  def benchmark_4_gpu(self):
203
    """Tests BERT SQuAD model performance with 4 GPUs."""
davidmochen's avatar
davidmochen committed
204
205
206
207
208
209

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad')
    FLAGS.train_batch_size = 16

210
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
211
212

  def benchmark_8_gpu(self):
213
214
215
216
217
218
219
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
    FLAGS.train_batch_size = 32

220
    self._run_and_report_benchmark()
221

222
223
224
225
226
227
228
229
230
231
232
233
  def benchmark_1_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

234
235
236
237
238
239
240
241
242
243
244
245
246
  def benchmark_1_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
  def benchmark_2_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 2 GPUs and FP16."""

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad_fp16')
    FLAGS.train_batch_size = 8
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_4_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 4 GPUs and FP16."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad_fp16')
    FLAGS.train_batch_size = 16
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

class BertSquadAccuracy(BertSquadBenchmarkBase):
  """Short accuracy test for BERT SQuAD model.

  Tests BERT SQuAD accuracy. The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu` format.
  """

  def __init__(self, output_dir=None, **kwargs):
    super(BertSquadAccuracy, self).__init__(output_dir=output_dir)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
304
    FLAGS.steps_per_loop = 1
305

306
307
308
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
309
    """Runs the benchmark and reports various metrics."""
310
    start_time_sec = time.time()
311
    self._train_squad(use_ds=use_ds, run_eagerly=run_eagerly)
312
313
314
315
316
317
318
319
320
    self._evaluate_squad()
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
321
322
        min_accuracy=0.900,
        max_accuracy=0.908)
323

324
325
326
327
328
329
330
331
332
333
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 4

    self._run_and_report_benchmark(use_ds=False, run_eagerly=True)

334
335
  def benchmark_8_gpu(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""
davidmochen's avatar
davidmochen committed
336
337
338
339
340
341

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
    FLAGS.train_batch_size = 32

342
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
343

344
345
346
347
348
349
350
351
352
353
354
355
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

356
357
358
359
360
361
362
  def benchmark_8_gpu_xla(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
    FLAGS.train_batch_size = 32
363
    FLAGS.enable_xla = True
364

365
    self._run_and_report_benchmark()
366

davidmochen's avatar
davidmochen committed
367
368
369

if __name__ == '__main__':
  tf.test.main()