bert_squad_benchmark.py 7.67 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.bert import run_squad
from official.bert.benchmark import benchmark_utils
33
from official.bert.benchmark import squad_evaluate_v1_1
davidmochen's avatar
davidmochen committed
34
35
36
from official.utils.misc import distribution_utils

# pylint: disable=line-too-long
37
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_model.ckpt'
davidmochen's avatar
davidmochen committed
38
39
40
41
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
SQUAD_SMALL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_small_meta_data'
42
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
davidmochen's avatar
davidmochen committed
43
44
45
46
47
48
49
50
51
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_config'
# pylint: enable=line-too-long

FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
  def _run_and_report_benchmark(self, training_summary_path, min_accuracy,
                                max_accuracy):
    """Runs the benchmark and reports various metrics."""
    start_time_sec = time.time()
    self._run_bert_squad()
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(training_summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))
      summary['eval_metrics'] = self.eval_metrics

    super(BertSquadBenchmarkBase, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=min_accuracy,
        max_accuracy=max_accuracy)

  def _evaluate_squad(self, predictions_file):
    """Evaluates a predictions file."""
    with tf.io.gfile.GFile(SQUAD_PREDICT_FILE, 'r') as reader:
      dataset_json = json.load(reader)
      dataset = dataset_json['data']

    with tf.io.gfile.GFile(predictions_file, 'r') as reader:
      predictions = json.load(reader)

    return squad_evaluate_v1_1.evaluate(dataset, predictions)

davidmochen's avatar
davidmochen committed
80
81
  @flagsaver.flagsaver
  def _run_bert_squad(self):
82
    """Starts BERT SQuAD training and evaluation tasks."""
davidmochen's avatar
davidmochen committed
83
84
85
86
87
88
89
90
91
92
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      input_meta_data = json.loads(reader.read().decode('utf-8'))

    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy='mirrored', num_gpus=self.num_gpus)

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
        custom_callbacks=[self.timer_callback])
93
94
95
96
97
    run_squad.predict_squad(strategy=strategy, input_meta_data=input_meta_data)
    predictions_file = os.path.join(FLAGS.model_dir, 'predictions.json')
    eval_metrics = self._evaluate_squad(predictions_file)
    # Use F1 score as reported evaluation metric.
    self.eval_metrics = eval_metrics['f1']
davidmochen's avatar
davidmochen committed
98
99


100
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
davidmochen's avatar
davidmochen committed
101
102
103
104
105
106
107
108
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu` format.
  """

  def __init__(self, output_dir=None, **kwargs):
109
    super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir)
davidmochen's avatar
davidmochen committed
110
111

  def _setup(self):
112
113
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadBenchmarkReal, self)._setup()
davidmochen's avatar
davidmochen committed
114
115
116
117
118
119
120
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_SMALL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1

121
122
123
124
  def _run_and_report_benchmark(self, training_summary_path):
    """Runs the benchmark and reports various metrics."""
    super(BertSquadBenchmarkReal, self)._run_and_report_benchmark(
        training_summary_path, min_accuracy=0, max_accuracy=1)
davidmochen's avatar
davidmochen committed
125
126

  def benchmark_1_gpu(self):
127
    """Tests BERT SQuAD model performance with 1 GPU."""
davidmochen's avatar
davidmochen committed
128
129
130
131
132
133
134
135
136
137

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
    FLAGS.train_batch_size = 4

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_2_gpu(self):
138
    """Tests BERT SQuAD model performance with 2 GPUs."""
davidmochen's avatar
davidmochen committed
139
140
141
142
143
144
145
146
147
148

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad')
    FLAGS.train_batch_size = 8

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_4_gpu(self):
149
    """Tests BERT SQuAD model performance with 4 GPUs."""
davidmochen's avatar
davidmochen committed
150
151
152
153
154
155
156
157
158
159

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad')
    FLAGS.train_batch_size = 16

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)

  def benchmark_8_gpu(self):
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
    FLAGS.train_batch_size = 32

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)


class BertSquadAccuracy(BertSquadBenchmarkBase):
  """Short accuracy test for BERT SQuAD model.

  Tests BERT SQuAD accuracy. The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu` format.
  """

  def __init__(self, output_dir=None, **kwargs):
    super(BertSquadAccuracy, self).__init__(output_dir=output_dir)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2

  def _run_and_report_benchmark(self, training_summary_path):
    """Runs the benchmark and reports various metrics."""
    super(BertSquadAccuracy, self)._run_and_report_benchmark(
        training_summary_path, min_accuracy=0.902, max_accuracy=0.909)

  def benchmark_8_gpu(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""
davidmochen's avatar
davidmochen committed
199
200
201
202
203
204
205
206
207
208
209
210

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
    FLAGS.train_batch_size = 32

    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    self._run_and_report_benchmark(summary_path)


if __name__ == '__main__':
  tf.test.main()