bert_squad_benchmark.py 7.89 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order

from official.bert import run_squad
from official.bert.benchmark import benchmark_utils
33
from official.bert.benchmark import squad_evaluate_v1_1
davidmochen's avatar
davidmochen committed
34
35
36
from official.utils.misc import distribution_utils

# pylint: disable=line-too-long
37
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_model.ckpt'
davidmochen's avatar
davidmochen committed
38
39
40
41
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
SQUAD_SMALL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_small_meta_data'
42
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
davidmochen's avatar
davidmochen committed
43
44
45
46
47
48
49
50
51
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/tf_20/uncased_L-24_H-1024_A-16/bert_config'
# pylint: enable=line-too-long

FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

52
53
54
55
56
  def _read_training_summary_from_file(self):
    """Reads the training summary from a file."""
    summary_path = os.path.join(FLAGS.model_dir, 'training_summary.txt')
    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
57

58
59
60
61
  def _read_input_meta_data_from_file(self):
    """Reads the input metadata from a file."""
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
62

63
64
  def _read_predictions_dataset_from_file(self):
    """Reads the predictions dataset from a file."""
65
66
    with tf.io.gfile.GFile(SQUAD_PREDICT_FILE, 'r') as reader:
      dataset_json = json.load(reader)
67
      return dataset_json['data']
68

69
70
71
  def _read_predictions_from_file(self):
    """Reads the predictions from a file."""
    predictions_file = os.path.join(FLAGS.model_dir, 'predictions.json')
72
    with tf.io.gfile.GFile(predictions_file, 'r') as reader:
73
      return json.load(reader)
74

75
76
77
78
  def _get_distribution_strategy(self):
    """Gets the distribution strategy."""
    return distribution_utils.get_distribution_strategy(
        distribution_strategy='mirrored', num_gpus=self.num_gpus)
79

davidmochen's avatar
davidmochen committed
80
  @flagsaver.flagsaver
81
82
83
84
  def _train_squad(self):
    """Runs BERT SQuAD training."""
    input_meta_data = self._read_input_meta_data_from_file()
    strategy = self._get_distribution_strategy()
davidmochen's avatar
davidmochen committed
85
86
87
88
89

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
        custom_callbacks=[self.timer_callback])
90
91
92
93
94
95
96

  @flagsaver.flagsaver
  def _evaluate_squad(self):
    """Runs BERT SQuAD evaluation."""
    input_meta_data = self._read_input_meta_data_from_file()
    strategy = self._get_distribution_strategy()

97
    run_squad.predict_squad(strategy=strategy, input_meta_data=input_meta_data)
98
99
100
101
102

    dataset = self._read_predictions_dataset_from_file()
    predictions = self._read_predictions_from_file()

    eval_metrics = squad_evaluate_v1_1.evaluate(dataset, predictions)
103
104
    # Use F1 score as reported evaluation metric.
    self.eval_metrics = eval_metrics['f1']
davidmochen's avatar
davidmochen committed
105
106


107
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
davidmochen's avatar
davidmochen committed
108
109
110
111
112
113
114
115
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu` format.
  """

  def __init__(self, output_dir=None, **kwargs):
116
    super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir)
davidmochen's avatar
davidmochen committed
117
118

  def _setup(self):
119
120
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadBenchmarkReal, self)._setup()
davidmochen's avatar
davidmochen committed
121
122
123
124
125
126
127
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_SMALL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1

128
  def _run_and_report_benchmark(self):
129
    """Runs the benchmark and reports various metrics."""
130
131
132
133
134
135
136
137
138
139
140
    start_time_sec = time.time()
    self._train_squad()
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()

    super(BertSquadBenchmarkReal, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)
davidmochen's avatar
davidmochen committed
141
142

  def benchmark_1_gpu(self):
143
    """Tests BERT SQuAD model performance with 1 GPU."""
davidmochen's avatar
davidmochen committed
144
145
146
147
148
149

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
    FLAGS.train_batch_size = 4

150
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
151
152

  def benchmark_2_gpu(self):
153
    """Tests BERT SQuAD model performance with 2 GPUs."""
davidmochen's avatar
davidmochen committed
154
155
156
157
158
159

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad')
    FLAGS.train_batch_size = 8

160
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
161
162

  def benchmark_4_gpu(self):
163
    """Tests BERT SQuAD model performance with 4 GPUs."""
davidmochen's avatar
davidmochen committed
164
165
166
167
168
169

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad')
    FLAGS.train_batch_size = 16

170
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
171
172

  def benchmark_8_gpu(self):
173
174
175
176
177
178
179
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
    FLAGS.train_batch_size = 32

180
    self._run_and_report_benchmark()
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203


class BertSquadAccuracy(BertSquadBenchmarkBase):
  """Short accuracy test for BERT SQuAD model.

  Tests BERT SQuAD accuracy. The naming convention of below test cases follow
  `benchmark_(number of gpus)_gpu` format.
  """

  def __init__(self, output_dir=None, **kwargs):
    super(BertSquadAccuracy, self).__init__(output_dir=output_dir)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2

204
  def _run_and_report_benchmark(self):
205
    """Runs the benchmark and reports various metrics."""
206
207
208
209
210
211
212
213
214
215
216
217
218
    start_time_sec = time.time()
    self._train_squad()
    self._evaluate_squad()
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0.902,
        max_accuracy=0.906)
219
220
221

  def benchmark_8_gpu(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""
davidmochen's avatar
davidmochen committed
222
223
224
225
226
227

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
    FLAGS.train_batch_size = 32

228
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
229
230
231
232


if __name__ == '__main__':
  tf.test.main()