bert_pretrain_benchmark.py 20 KB
Newer Older
Chen Chen's avatar
Chen Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes benchmark testing for bert pretraining."""
# pylint: disable=line-too-long
import json
import os
import time
from typing import Optional

from absl import flags
from absl import logging
24
import tensorflow as tf
Chen Chen's avatar
Chen Chen committed
25
26
27

from official.benchmark import benchmark_wrappers
from official.benchmark import bert_benchmark_utils
Jing Li's avatar
Jing Li committed
28
from official.benchmark import owner_utils
29
from official.common import distribute_utils
Le Hou's avatar
Le Hou committed
30
from official.legacy.bert import run_pretraining
Chen Chen's avatar
Chen Chen committed
31
32
33
from official.utils.flags import core as flags_core

# Pretrain masked lanauge modeling accuracy range:
Chen Chen's avatar
Chen Chen committed
34
35
MIN_MLM_ACCURACY = 0.635
MAX_MLM_ACCURACY = 0.645
Chen Chen's avatar
Chen Chen committed
36
37

# Pretrain next sentence prediction accuracy range:
Chen Chen's avatar
Chen Chen committed
38
39
MIN_NSP_ACCURACY = 0.94
MAX_NSP_ACCURACY = 0.96
Chen Chen's avatar
Chen Chen committed
40

Zongwei Zhou's avatar
Zongwei Zhou committed
41
42
43
44
45
46
47
48
49
50

# Pretrain masked lanauge modeling accuracy range:
MIN_MLM_ACCURACY_GPU = 0.378
MAX_MLM_ACCURACY_GPU = 0.388

# Pretrain next sentence prediction accuracy range:
MIN_NSP_ACCURACY_GPU = 0.82
MAX_NSP_ACCURACY_GPU = 0.84


Chen Chen's avatar
Chen Chen committed
51
52
53
54
55
56
57
58
59
60
61
BERT_PRETRAIN_FILES_SEQ128 = 'gs://mlcompass-data/bert/pretraining_data/seq_128/wikipedia.tfrecord*,gs://mlcompass-data/bert/pretraining_data/seq_128/books.tfrecord*'
BERT_BASE_CONFIG_FILE = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12/bert_config.json'

FLAGS = flags.FLAGS


class BertPretrainAccuracyBenchmark(bert_benchmark_utils.BertBenchmarkBase):
  """Benchmark accuracy tests for BERT Pretraining."""

  def __init__(self,
               output_dir: Optional[str] = None,
Chen Chen's avatar
Chen Chen committed
62
63
               tpu: Optional[str] = None,
               **kwargs):
Chen Chen's avatar
Chen Chen committed
64
65
66
67
68
    """Inits BertPretrainAccuracyBenchmark class.

    Args:
      output_dir: Directory where to output e.g. log files
      tpu: TPU name to use in a TPU benchmark.
Chen Chen's avatar
Chen Chen committed
69
      **kwargs: Additional keyword arguments.
Chen Chen's avatar
Chen Chen committed
70
71
    """
    super(BertPretrainAccuracyBenchmark, self).__init__(
Chen Chen's avatar
Chen Chen committed
72
        output_dir=output_dir, tpu=tpu, **kwargs)
Chen Chen's avatar
Chen Chen committed
73

Zongwei Zhou's avatar
Zongwei Zhou committed
74
75
76
77
78
79
80
81
82
83
84
  def _get_distribution_strategy(self, ds_type='mirrored'):
    """Gets the distribution strategy.

    Args:
      ds_type: String, the distribution strategy type to be used. Can be
        'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'.

    Returns:
      A `tf.distribute.DistibutionStrategy` object.
    """
    if self.tpu or ds_type == 'tpu':
85
      return distribute_utils.get_distribution_strategy(
Zongwei Zhou's avatar
Zongwei Zhou committed
86
87
88
          distribution_strategy='tpu', tpu_address=self.tpu)
    elif ds_type == 'multi_worker_mirrored':
      # Configures cluster spec for multi-worker distribution strategy.
89
90
91
      _ = distribute_utils.configure_cluster(FLAGS.worker_hosts,
                                             FLAGS.task_index)
    return distribute_utils.get_distribution_strategy(
Zongwei Zhou's avatar
Zongwei Zhou committed
92
93
94
95
        distribution_strategy=ds_type,
        num_gpus=FLAGS.num_gpus,
        all_reduce_alg=FLAGS.all_reduce_alg)

Chen Chen's avatar
Chen Chen committed
96
  @benchmark_wrappers.enable_runtime_flags
Zongwei Zhou's avatar
Zongwei Zhou committed
97
98
  def _run_and_report_benchmark(self, summary_path: str, report_accuracy: bool,
                                ds_type: str):
Chen Chen's avatar
Chen Chen committed
99
    """Runs and reports the benchmark given the provided configuration."""
Zongwei Zhou's avatar
Zongwei Zhou committed
100
    distribution = self._get_distribution_strategy(ds_type=ds_type)
Chen Chen's avatar
Chen Chen committed
101
102
103
104
105
106
    logging.info('Flags: %s', flags_core.get_nondefault_flags_as_str())
    start_time_sec = time.time()
    run_pretraining.run_bert_pretrain(
        strategy=distribution, custom_callbacks=self.timer_callback)
    wall_time_sec = time.time() - start_time_sec

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
107
108
109
110
111
112
113
    # For GPU multi-worker, the summary text file is only generated on chief
    # (metrics aggregated), so only chief has to report the result.
    if tf.io.gfile.exists(summary_path):
      with tf.io.gfile.GFile(summary_path, 'rb') as reader:
        summary = json.loads(reader.read().decode('utf-8'))
      self._report_benchmark(summary, start_time_sec, wall_time_sec,
                             report_accuracy, ds_type)
Chen Chen's avatar
Chen Chen committed
114

Jing Li's avatar
Jing Li committed
115
  def _report_benchmark(self, summary, start_time_sec, wall_time_sec,
Zongwei Zhou's avatar
Zongwei Zhou committed
116
                        report_accuracy, ds_type):
Chen Chen's avatar
Chen Chen committed
117
118
119
120
121
    metrics = [{
        'name': 'train_loss',
        'value': summary['train_loss'],
    }, {
        'name':
Jing Li's avatar
Jing Li committed
122
            'exp_per_second',
Chen Chen's avatar
Chen Chen committed
123
124
125
126
127
128
129
        'value':
            self.timer_callback.get_examples_per_sec(FLAGS.train_batch_size *
                                                     FLAGS.steps_per_loop)
    }, {
        'name': 'startup_time',
        'value': self.timer_callback.get_startup_time(start_time_sec)
    }]
Jing Li's avatar
Jing Li committed
130
    if report_accuracy:
Zongwei Zhou's avatar
Zongwei Zhou committed
131
132
133
134
135
136
137
138
139
140
      if ds_type == 'tpu':
        min_mlm_acc = MIN_MLM_ACCURACY
        max_mlm_acc = MAX_MLM_ACCURACY
        min_nsp_acc = MIN_NSP_ACCURACY
        max_nsp_acc = MAX_NSP_ACCURACY
      else:
        min_mlm_acc = MIN_MLM_ACCURACY_GPU
        max_mlm_acc = MAX_MLM_ACCURACY_GPU
        min_nsp_acc = MIN_NSP_ACCURACY_GPU
        max_nsp_acc = MAX_NSP_ACCURACY_GPU
Jing Li's avatar
Jing Li committed
141
142
143
      metrics.extend([{
          'name': 'masked_lm_accuracy',
          'value': summary['masked_lm_accuracy'],
Zongwei Zhou's avatar
Zongwei Zhou committed
144
145
          'min_value': min_mlm_acc,
          'max_value': max_mlm_acc,
Jing Li's avatar
Jing Li committed
146
147
148
      }, {
          'name': 'next_sentence_accuracy',
          'value': summary['next_sentence_accuracy'],
Zongwei Zhou's avatar
Zongwei Zhou committed
149
150
          'min_value': min_nsp_acc,
          'max_value': max_nsp_acc,
Jing Li's avatar
Jing Li committed
151
      }])
Chen Chen's avatar
Chen Chen committed
152
153
154
155
156
157
158
159
160
161
    self.report_benchmark(
        iters=summary['total_training_steps'],
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_core.get_nondefault_flags_as_str()})

  def _specify_common_flags(self):
    FLAGS.bert_config_file = BERT_BASE_CONFIG_FILE
    FLAGS.learning_rate = 1e-4
    FLAGS.warmup_steps = 10000
Chen Chen's avatar
Chen Chen committed
162
    FLAGS.steps_per_loop = 10000
Chen Chen's avatar
Chen Chen committed
163
164
165
    FLAGS.input_files = BERT_PRETRAIN_FILES_SEQ128
    FLAGS.max_seq_length = 128
    FLAGS.max_predictions_per_seq = 20
Zongwei Zhou's avatar
Zongwei Zhou committed
166
167
168

  def _specify_tpu_common_flags(self):
    FLAGS.distribution_strategy = 'tpu'
Chen Chen's avatar
Chen Chen committed
169
170
    FLAGS.dtype = 'bf16'

Zongwei Zhou's avatar
Zongwei Zhou committed
171
172
173
174
175
  def _specify_gpu_common_flags(self):
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

Jing Li's avatar
Jing Li committed
176
  @owner_utils.Owner('tf-model-garden')
Chen Chen's avatar
Chen Chen committed
177
178
  def benchmark_accuracy_8x8_tpu_bf16_seq128_500k_steps(self):
    """Test bert pretraining with 8x8 TPU for 500k steps."""
Chen Chen's avatar
Chen Chen committed
179
180
181
    # This is used for accuracy test.
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
182
183
    self._specify_tpu_common_flags()
    FLAGS.train_batch_size = 512
Chen Chen's avatar
Chen Chen committed
184
    FLAGS.num_steps_per_epoch = 500000
Chen Chen's avatar
Chen Chen committed
185
    FLAGS.num_train_epochs = 1
Chen Chen's avatar
Chen Chen committed
186
    FLAGS.model_dir = self._get_model_dir(
Chen Chen's avatar
Chen Chen committed
187
        'benchmark_accuracy_8x8_tpu_bf16_seq128_500k_steps')
Chen Chen's avatar
Chen Chen committed
188
189
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
Chen Chen's avatar
Chen Chen committed
190
191
192
193
    # Set train_summary_interval to -1 to disable training summary, because
    # writing summary to gcs may fail and summaries are not needed for this
    # accuracy benchmark test.
    FLAGS.train_summary_interval = -1
Hongkun Yu's avatar
Hongkun Yu committed
194
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
195
196
197
        summary_path=summary_path,
        report_accuracy=True,
        ds_type=FLAGS.distribution_strategy)
Chen Chen's avatar
Chen Chen committed
198

Allen Wang's avatar
Allen Wang committed
199
200
201
202
203
  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_2x2_tpu_bf16_seq128_10k_steps(self):
    """Test bert pretraining with 2x2 TPU for 10000 steps."""
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
204
    self._specify_tpu_common_flags()
Allen Wang's avatar
Allen Wang committed
205
206
207
208
209
210
211
212
213
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
    FLAGS.train_batch_size = 128
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_2x2_tpu_bf16_seq128_10k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
214
215
216
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)
Allen Wang's avatar
Allen Wang committed
217
218
219
220
221
222

  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_2x2_tpu_bf16_seq128_10k_steps_mlir(self):
    """Test bert pretraining with 2x2 TPU with MLIR for 10000 steps."""
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
223
    self._specify_tpu_common_flags()
Allen Wang's avatar
Allen Wang committed
224
225
226
227
228
229
230
231
232
233
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
    FLAGS.train_batch_size = 128
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_2x2_tpu_bf16_seq128_10k_steps_mlir')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    tf.config.experimental.enable_mlir_bridge()
    # Disable accuracy check.
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
234
235
236
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)
Allen Wang's avatar
Allen Wang committed
237

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
238
239
240
241
242
  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_4x4_tpu_bf16_seq128_10k_steps(self):
    """Test bert pretraining with 4x4 TPU for 10000 steps."""
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
243
244
    self._specify_tpu_common_flags()
    FLAGS.train_batch_size = 512
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
245
246
247
248
249
250
251
252
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_4x4_tpu_bf16_seq128_10k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
253
254
255
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
256

Allen Wang's avatar
Allen Wang committed
257
258
259
260
261
  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_4x4_tpu_bf16_seq128_10k_steps_mlir(self):
    """Test bert pretraining with 4x4 TPU with MLIR for 10000 steps."""
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
262
263
    self._specify_tpu_common_flags()
    FLAGS.train_batch_size = 512
Allen Wang's avatar
Allen Wang committed
264
265
266
267
268
269
270
271
272
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_4x4_tpu_bf16_seq128_10k_steps_mlir')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    tf.config.experimental.enable_mlir_bridge()
    # Disable accuracy check.
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
273
274
275
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)
Allen Wang's avatar
Allen Wang committed
276

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_4x4_tpu_bf16_seq128_1k_steps(self):
    """Test bert pretraining with 4x4 TPU for 1000 steps."""
    self._setup()
    self._specify_common_flags()
    self._specify_tpu_common_flags()
    FLAGS.train_batch_size = 512
    FLAGS.warmup_steps = 0
    FLAGS.num_steps_per_epoch = 1000
    FLAGS.num_train_epochs = 1
    FLAGS.steps_per_loop = 500
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_4x4_tpu_bf16_seq128_1k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)

Jing Li's avatar
Jing Li committed
298
299
300
  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_8x8_tpu_bf16_seq128_10k_steps(self):
    """Test bert pretraining with 8x8 TPU for 10000 steps."""
Chen Chen's avatar
Chen Chen committed
301
302
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
303
304
    self._specify_tpu_common_flags()
    FLAGS.train_batch_size = 512
Jing Li's avatar
Jing Li committed
305
306
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
Chen Chen's avatar
Chen Chen committed
307
    FLAGS.model_dir = self._get_model_dir(
Jing Li's avatar
Jing Li committed
308
        'benchmark_perf_8x8_tpu_bf16_seq128_10k_steps')
Chen Chen's avatar
Chen Chen committed
309
310
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
Jing Li's avatar
Jing Li committed
311
    # Disable accuracy check.
Hongkun Yu's avatar
Hongkun Yu committed
312
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
313
314
315
316
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_8x16_tpu_bf16_seq128_1k_steps(self):
    """Test bert pretraining with 8x16 TPU for 1000 steps."""
    self._setup()
    self._specify_common_flags()
    self._specify_tpu_common_flags()
    FLAGS.train_batch_size = 4096
    FLAGS.warmup_steps = 0
    FLAGS.num_steps_per_epoch = 1000
    FLAGS.num_train_epochs = 1
    FLAGS.steps_per_loop = 500
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_8x16_tpu_bf16_seq128_1k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)

Zongwei Zhou's avatar
Zongwei Zhou committed
338
339
340
341
342
343
344
  @owner_utils.Owner('tf-dist-strat')
  def benchmark_accuracy_1x8_gpu_fp16_seq128_15k_steps(self):
    """Test bert pretraining with 8 GPU for 15k steps."""
    # This is used for accuracy test.
    self._setup()
    self._specify_common_flags()
    self._specify_gpu_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
345
    FLAGS.num_gpus = 8
Zongwei Zhou's avatar
Zongwei Zhou committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    FLAGS.train_batch_size = 96
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 3
    FLAGS.steps_per_loop = 5000
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_accuracy_1x8_gpu_fp16_seq128_15k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Set train_summary_interval to -1 to disable training summary, because
    # writing summary to gcs may fail and summaries are not needed for this
    # accuracy benchmark test.
    FLAGS.train_summary_interval = -1
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=True,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_perf_1x1_gpu_fp16_seq128_200_steps(self):
    """Test bert pretraining with 1 GPU for 200 steps."""
    self._setup()
    self._specify_common_flags()
    self._specify_gpu_common_flags()
    FLAGS.num_steps_per_epoch = 200
    FLAGS.num_train_epochs = 1
    FLAGS.num_gpus = 1
    FLAGS.train_batch_size = 12
    FLAGS.steps_per_loop = 100
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_1x1_gpu_fp16_seq128_200_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_perf_1x8_gpu_fp16_seq128_200_steps(self):
    """Test bert pretraining with 8 GPU for 200 steps."""
    self._setup()
    self._specify_common_flags()
    self._specify_gpu_common_flags()
    FLAGS.num_steps_per_epoch = 200
    FLAGS.num_train_epochs = 1
    FLAGS.num_gpus = 8
    FLAGS.train_batch_size = 96
    FLAGS.steps_per_loop = 100
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_1x8_gpu_fp16_seq128_200_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)
Chen Chen's avatar
Chen Chen committed
404
405


Zongwei Zhou's avatar
Zongwei Zhou committed
406
class BertPretrainMultiWorkerBenchmark(BertPretrainAccuracyBenchmark):
Zongwei Zhou's avatar
Zongwei Zhou committed
407
  """Bert pretrain distributed benchmark tests with multiple workers."""
Zongwei Zhou's avatar
Zongwei Zhou committed
408

Zongwei Zhou's avatar
Zongwei Zhou committed
409
  def __init__(self, output_dir=None, tpu=None, **kwargs):
Zongwei Zhou's avatar
Zongwei Zhou committed
410
    super(BertPretrainMultiWorkerBenchmark, self).__init__(
Zongwei Zhou's avatar
Zongwei Zhou committed
411
        output_dir=output_dir, tpu=tpu, **kwargs)
Zongwei Zhou's avatar
Zongwei Zhou committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

  def _specify_gpu_mwms_flags(self):
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.all_reduce_alg = 'nccl'
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
    FLAGS.num_gpus = 8

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_accuracy_mwms_1x8_gpu_fp16_seq128_15k_steps(self):
    """Test bert pretraining with 8 GPU for 15k steps."""
    # This is used for accuracy test.
    self._setup()
    self._specify_common_flags()
    self._specify_gpu_mwms_flags()
    FLAGS.train_batch_size = 96
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 3
    FLAGS.steps_per_loop = 5000
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_accuracy_mwms_1x8_gpu_fp16_seq128_15k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Set train_summary_interval to -1 to disable training summary, because
    # writing summary to gcs may fail and summaries are not needed for this
    # accuracy benchmark test.
    FLAGS.train_summary_interval = -1
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=True,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_accuracy_mwms_2x8_gpu_fp16_seq128_15k_steps(self):
    """Test bert pretraining with 2x8 GPU for 15k steps."""
    # This is used for accuracy test.
    self._setup()
    self._specify_common_flags()
    self._specify_gpu_mwms_flags()
    # ues the same global batch size as accuracy_mwms_1x8 benchmark.
    FLAGS.train_batch_size = 96
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 3
    FLAGS.steps_per_loop = 5000
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_accuracy_mwms_2x8_gpu_fp16_seq128_15k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Set train_summary_interval to -1 to disable training summary, because
    # writing summary to gcs may fail and summaries are not needed for this
    # accuracy benchmark test.
    FLAGS.train_summary_interval = -1
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=True,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_perf_mwms_1x8_gpu_fp16_seq128_200_steps(self):
    """Test bert pretraining with 1x8 GPU for 200 steps."""
    self._setup()
    self._specify_common_flags()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
474
    self._specify_gpu_mwms_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    FLAGS.num_steps_per_epoch = 200
    FLAGS.num_train_epochs = 1
    FLAGS.train_batch_size = 96 * 1
    FLAGS.steps_per_loop = 100
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_mwms_1x8_gpu_fp16_seq128_200_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_perf_mwms_2x8_gpu_fp16_seq128_200_steps(self):
    """Test bert pretraining with 2x8 GPU for 200 steps."""
    self._setup()
    self._specify_common_flags()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
494
    self._specify_gpu_mwms_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    FLAGS.num_steps_per_epoch = 200
    FLAGS.num_train_epochs = 1
    FLAGS.train_batch_size = 96 * 2
    FLAGS.steps_per_loop = 100
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_mwms_2x8_gpu_fp16_seq128_200_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_perf_mwms_8x8_gpu_fp16_seq128_200_steps(self):
    """Test bert pretraining with 8x8 GPU for 200 steps."""
    self._setup()
    self._specify_common_flags()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
514
    self._specify_gpu_mwms_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    FLAGS.num_steps_per_epoch = 200
    FLAGS.num_train_epochs = 1
    FLAGS.train_batch_size = 96*8
    FLAGS.steps_per_loop = 100
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_mwms_8x8_gpu_fp16_seq128_200_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)


Chen Chen's avatar
Chen Chen committed
530
531
if __name__ == '__main__':
  tf.test.main()