bert_pretrain_benchmark.py 18.6 KB
Newer Older
Chen Chen's avatar
Chen Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes benchmark testing for bert pretraining."""
# pylint: disable=line-too-long
from __future__ import print_function

import json
import os
import time
from typing import Optional

from absl import flags
from absl import logging
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.benchmark import benchmark_wrappers
from official.benchmark import bert_benchmark_utils
Jing Li's avatar
Jing Li committed
31
from official.benchmark import owner_utils
Chen Chen's avatar
Chen Chen committed
32
33
34
35
36
from official.nlp.bert import run_pretraining
from official.utils.flags import core as flags_core
from official.utils.misc import distribution_utils

# Pretrain masked lanauge modeling accuracy range:
Chen Chen's avatar
Chen Chen committed
37
38
MIN_MLM_ACCURACY = 0.635
MAX_MLM_ACCURACY = 0.645
Chen Chen's avatar
Chen Chen committed
39
40

# Pretrain next sentence prediction accuracy range:
Chen Chen's avatar
Chen Chen committed
41
42
MIN_NSP_ACCURACY = 0.94
MAX_NSP_ACCURACY = 0.96
Chen Chen's avatar
Chen Chen committed
43

Zongwei Zhou's avatar
Zongwei Zhou committed
44
45
46
47
48
49
50
51
52
53

# Pretrain masked lanauge modeling accuracy range:
MIN_MLM_ACCURACY_GPU = 0.378
MAX_MLM_ACCURACY_GPU = 0.388

# Pretrain next sentence prediction accuracy range:
MIN_NSP_ACCURACY_GPU = 0.82
MAX_NSP_ACCURACY_GPU = 0.84


Chen Chen's avatar
Chen Chen committed
54
55
56
57
58
59
60
61
62
63
64
BERT_PRETRAIN_FILES_SEQ128 = 'gs://mlcompass-data/bert/pretraining_data/seq_128/wikipedia.tfrecord*,gs://mlcompass-data/bert/pretraining_data/seq_128/books.tfrecord*'
BERT_BASE_CONFIG_FILE = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12/bert_config.json'

FLAGS = flags.FLAGS


class BertPretrainAccuracyBenchmark(bert_benchmark_utils.BertBenchmarkBase):
  """Benchmark accuracy tests for BERT Pretraining."""

  def __init__(self,
               output_dir: Optional[str] = None,
Chen Chen's avatar
Chen Chen committed
65
66
               tpu: Optional[str] = None,
               **kwargs):
Chen Chen's avatar
Chen Chen committed
67
68
69
70
71
    """Inits BertPretrainAccuracyBenchmark class.

    Args:
      output_dir: Directory where to output e.g. log files
      tpu: TPU name to use in a TPU benchmark.
Chen Chen's avatar
Chen Chen committed
72
      **kwargs: Additional keyword arguments.
Chen Chen's avatar
Chen Chen committed
73
74
    """
    super(BertPretrainAccuracyBenchmark, self).__init__(
Chen Chen's avatar
Chen Chen committed
75
        output_dir=output_dir, tpu=tpu, **kwargs)
Chen Chen's avatar
Chen Chen committed
76

Zongwei Zhou's avatar
Zongwei Zhou committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  def _get_distribution_strategy(self, ds_type='mirrored'):
    """Gets the distribution strategy.

    Args:
      ds_type: String, the distribution strategy type to be used. Can be
        'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'.

    Returns:
      A `tf.distribute.DistibutionStrategy` object.
    """
    if self.tpu or ds_type == 'tpu':
      return distribution_utils.get_distribution_strategy(
          distribution_strategy='tpu', tpu_address=self.tpu)
    elif ds_type == 'multi_worker_mirrored':
      # Configures cluster spec for multi-worker distribution strategy.
      _ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
                                               FLAGS.task_index)
    return distribution_utils.get_distribution_strategy(
        distribution_strategy=ds_type,
        num_gpus=FLAGS.num_gpus,
        all_reduce_alg=FLAGS.all_reduce_alg)

Chen Chen's avatar
Chen Chen committed
99
  @benchmark_wrappers.enable_runtime_flags
Zongwei Zhou's avatar
Zongwei Zhou committed
100
101
  def _run_and_report_benchmark(self, summary_path: str, report_accuracy: bool,
                                ds_type: str):
Chen Chen's avatar
Chen Chen committed
102
    """Runs and reports the benchmark given the provided configuration."""
Zongwei Zhou's avatar
Zongwei Zhou committed
103
    distribution = self._get_distribution_strategy(ds_type=ds_type)
Chen Chen's avatar
Chen Chen committed
104
105
106
107
108
109
    logging.info('Flags: %s', flags_core.get_nondefault_flags_as_str())
    start_time_sec = time.time()
    run_pretraining.run_bert_pretrain(
        strategy=distribution, custom_callbacks=self.timer_callback)
    wall_time_sec = time.time() - start_time_sec

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
111
112
113
114
115
116
    # For GPU multi-worker, the summary text file is only generated on chief
    # (metrics aggregated), so only chief has to report the result.
    if tf.io.gfile.exists(summary_path):
      with tf.io.gfile.GFile(summary_path, 'rb') as reader:
        summary = json.loads(reader.read().decode('utf-8'))
      self._report_benchmark(summary, start_time_sec, wall_time_sec,
                             report_accuracy, ds_type)
Chen Chen's avatar
Chen Chen committed
117

Jing Li's avatar
Jing Li committed
118
  def _report_benchmark(self, summary, start_time_sec, wall_time_sec,
Zongwei Zhou's avatar
Zongwei Zhou committed
119
                        report_accuracy, ds_type):
Chen Chen's avatar
Chen Chen committed
120
121
122
123
124
    metrics = [{
        'name': 'train_loss',
        'value': summary['train_loss'],
    }, {
        'name':
Jing Li's avatar
Jing Li committed
125
            'exp_per_second',
Chen Chen's avatar
Chen Chen committed
126
127
128
129
130
131
132
        'value':
            self.timer_callback.get_examples_per_sec(FLAGS.train_batch_size *
                                                     FLAGS.steps_per_loop)
    }, {
        'name': 'startup_time',
        'value': self.timer_callback.get_startup_time(start_time_sec)
    }]
Jing Li's avatar
Jing Li committed
133
    if report_accuracy:
Zongwei Zhou's avatar
Zongwei Zhou committed
134
135
136
137
138
139
140
141
142
143
      if ds_type == 'tpu':
        min_mlm_acc = MIN_MLM_ACCURACY
        max_mlm_acc = MAX_MLM_ACCURACY
        min_nsp_acc = MIN_NSP_ACCURACY
        max_nsp_acc = MAX_NSP_ACCURACY
      else:
        min_mlm_acc = MIN_MLM_ACCURACY_GPU
        max_mlm_acc = MAX_MLM_ACCURACY_GPU
        min_nsp_acc = MIN_NSP_ACCURACY_GPU
        max_nsp_acc = MAX_NSP_ACCURACY_GPU
Jing Li's avatar
Jing Li committed
144
145
146
      metrics.extend([{
          'name': 'masked_lm_accuracy',
          'value': summary['masked_lm_accuracy'],
Zongwei Zhou's avatar
Zongwei Zhou committed
147
148
          'min_value': min_mlm_acc,
          'max_value': max_mlm_acc,
Jing Li's avatar
Jing Li committed
149
150
151
      }, {
          'name': 'next_sentence_accuracy',
          'value': summary['next_sentence_accuracy'],
Zongwei Zhou's avatar
Zongwei Zhou committed
152
153
          'min_value': min_nsp_acc,
          'max_value': max_nsp_acc,
Jing Li's avatar
Jing Li committed
154
      }])
Chen Chen's avatar
Chen Chen committed
155
156
157
158
159
160
161
162
163
164
    self.report_benchmark(
        iters=summary['total_training_steps'],
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_core.get_nondefault_flags_as_str()})

  def _specify_common_flags(self):
    FLAGS.bert_config_file = BERT_BASE_CONFIG_FILE
    FLAGS.learning_rate = 1e-4
    FLAGS.warmup_steps = 10000
Chen Chen's avatar
Chen Chen committed
165
    FLAGS.steps_per_loop = 10000
Chen Chen's avatar
Chen Chen committed
166
167
168
    FLAGS.input_files = BERT_PRETRAIN_FILES_SEQ128
    FLAGS.max_seq_length = 128
    FLAGS.max_predictions_per_seq = 20
Zongwei Zhou's avatar
Zongwei Zhou committed
169
170
171

  def _specify_tpu_common_flags(self):
    FLAGS.distribution_strategy = 'tpu'
Chen Chen's avatar
Chen Chen committed
172
173
    FLAGS.dtype = 'bf16'

Zongwei Zhou's avatar
Zongwei Zhou committed
174
175
176
177
178
  def _specify_gpu_common_flags(self):
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

Jing Li's avatar
Jing Li committed
179
  @owner_utils.Owner('tf-model-garden')
Chen Chen's avatar
Chen Chen committed
180
181
  def benchmark_accuracy_8x8_tpu_bf16_seq128_500k_steps(self):
    """Test bert pretraining with 8x8 TPU for 500k steps."""
Chen Chen's avatar
Chen Chen committed
182
183
184
    # This is used for accuracy test.
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
185
186
    self._specify_tpu_common_flags()
    FLAGS.train_batch_size = 512
Chen Chen's avatar
Chen Chen committed
187
    FLAGS.num_steps_per_epoch = 500000
Chen Chen's avatar
Chen Chen committed
188
    FLAGS.num_train_epochs = 1
Chen Chen's avatar
Chen Chen committed
189
    FLAGS.model_dir = self._get_model_dir(
Chen Chen's avatar
Chen Chen committed
190
        'benchmark_accuracy_8x8_tpu_bf16_seq128_500k_steps')
Chen Chen's avatar
Chen Chen committed
191
192
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
Chen Chen's avatar
Chen Chen committed
193
194
195
196
    # Set train_summary_interval to -1 to disable training summary, because
    # writing summary to gcs may fail and summaries are not needed for this
    # accuracy benchmark test.
    FLAGS.train_summary_interval = -1
Hongkun Yu's avatar
Hongkun Yu committed
197
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
198
199
200
        summary_path=summary_path,
        report_accuracy=True,
        ds_type=FLAGS.distribution_strategy)
Chen Chen's avatar
Chen Chen committed
201

Allen Wang's avatar
Allen Wang committed
202
203
204
205
206
  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_2x2_tpu_bf16_seq128_10k_steps(self):
    """Test bert pretraining with 2x2 TPU for 10000 steps."""
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
207
    self._specify_tpu_common_flags()
Allen Wang's avatar
Allen Wang committed
208
209
210
211
212
213
214
215
216
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
    FLAGS.train_batch_size = 128
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_2x2_tpu_bf16_seq128_10k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
217
218
219
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)
Allen Wang's avatar
Allen Wang committed
220
221
222
223
224
225

  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_2x2_tpu_bf16_seq128_10k_steps_mlir(self):
    """Test bert pretraining with 2x2 TPU with MLIR for 10000 steps."""
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
226
    self._specify_tpu_common_flags()
Allen Wang's avatar
Allen Wang committed
227
228
229
230
231
232
233
234
235
236
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
    FLAGS.train_batch_size = 128
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_2x2_tpu_bf16_seq128_10k_steps_mlir')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    tf.config.experimental.enable_mlir_bridge()
    # Disable accuracy check.
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
237
238
239
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)
Allen Wang's avatar
Allen Wang committed
240

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
241
242
243
244
245
  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_4x4_tpu_bf16_seq128_10k_steps(self):
    """Test bert pretraining with 4x4 TPU for 10000 steps."""
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
246
247
    self._specify_tpu_common_flags()
    FLAGS.train_batch_size = 512
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
248
249
250
251
252
253
254
255
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_4x4_tpu_bf16_seq128_10k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
256
257
258
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
259

Allen Wang's avatar
Allen Wang committed
260
261
262
263
264
  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_4x4_tpu_bf16_seq128_10k_steps_mlir(self):
    """Test bert pretraining with 4x4 TPU with MLIR for 10000 steps."""
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
265
266
    self._specify_tpu_common_flags()
    FLAGS.train_batch_size = 512
Allen Wang's avatar
Allen Wang committed
267
268
269
270
271
272
273
274
275
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_4x4_tpu_bf16_seq128_10k_steps_mlir')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    tf.config.experimental.enable_mlir_bridge()
    # Disable accuracy check.
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
276
277
278
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)
Allen Wang's avatar
Allen Wang committed
279

Jing Li's avatar
Jing Li committed
280
281
282
  @owner_utils.Owner('tf-model-garden')
  def benchmark_perf_8x8_tpu_bf16_seq128_10k_steps(self):
    """Test bert pretraining with 8x8 TPU for 10000 steps."""
Chen Chen's avatar
Chen Chen committed
283
284
    self._setup()
    self._specify_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
285
286
    self._specify_tpu_common_flags()
    FLAGS.train_batch_size = 512
Jing Li's avatar
Jing Li committed
287
288
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 2
Chen Chen's avatar
Chen Chen committed
289
    FLAGS.model_dir = self._get_model_dir(
Jing Li's avatar
Jing Li committed
290
        'benchmark_perf_8x8_tpu_bf16_seq128_10k_steps')
Chen Chen's avatar
Chen Chen committed
291
292
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
Jing Li's avatar
Jing Li committed
293
    # Disable accuracy check.
Hongkun Yu's avatar
Hongkun Yu committed
294
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
295
296
297
298
299
300
301
302
303
304
305
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_accuracy_1x8_gpu_fp16_seq128_15k_steps(self):
    """Test bert pretraining with 8 GPU for 15k steps."""
    # This is used for accuracy test.
    self._setup()
    self._specify_common_flags()
    self._specify_gpu_common_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
306
    FLAGS.num_gpus = 8
Zongwei Zhou's avatar
Zongwei Zhou committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    FLAGS.train_batch_size = 96
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 3
    FLAGS.steps_per_loop = 5000
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_accuracy_1x8_gpu_fp16_seq128_15k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Set train_summary_interval to -1 to disable training summary, because
    # writing summary to gcs may fail and summaries are not needed for this
    # accuracy benchmark test.
    FLAGS.train_summary_interval = -1
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=True,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_perf_1x1_gpu_fp16_seq128_200_steps(self):
    """Test bert pretraining with 1 GPU for 200 steps."""
    self._setup()
    self._specify_common_flags()
    self._specify_gpu_common_flags()
    FLAGS.num_steps_per_epoch = 200
    FLAGS.num_train_epochs = 1
    FLAGS.num_gpus = 1
    FLAGS.train_batch_size = 12
    FLAGS.steps_per_loop = 100
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_1x1_gpu_fp16_seq128_200_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_perf_1x8_gpu_fp16_seq128_200_steps(self):
    """Test bert pretraining with 8 GPU for 200 steps."""
    self._setup()
    self._specify_common_flags()
    self._specify_gpu_common_flags()
    FLAGS.num_steps_per_epoch = 200
    FLAGS.num_train_epochs = 1
    FLAGS.num_gpus = 8
    FLAGS.train_batch_size = 96
    FLAGS.steps_per_loop = 100
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_1x8_gpu_fp16_seq128_200_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)
Chen Chen's avatar
Chen Chen committed
365
366


Zongwei Zhou's avatar
Zongwei Zhou committed
367
class BertPretrainMultiWorkerBenchmark(BertPretrainAccuracyBenchmark):
Zongwei Zhou's avatar
Zongwei Zhou committed
368
  """Bert pretrain distributed benchmark tests with multiple workers."""
Zongwei Zhou's avatar
Zongwei Zhou committed
369

Zongwei Zhou's avatar
Zongwei Zhou committed
370
  def __init__(self, output_dir=None, tpu=None, **kwargs):
Zongwei Zhou's avatar
Zongwei Zhou committed
371
    super(BertPretrainMultiWorkerBenchmark, self).__init__(
Zongwei Zhou's avatar
Zongwei Zhou committed
372
        output_dir=output_dir, tpu=tpu, **kwargs)
Zongwei Zhou's avatar
Zongwei Zhou committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

  def _specify_gpu_mwms_flags(self):
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.all_reduce_alg = 'nccl'
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
    FLAGS.num_gpus = 8

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_accuracy_mwms_1x8_gpu_fp16_seq128_15k_steps(self):
    """Test bert pretraining with 8 GPU for 15k steps."""
    # This is used for accuracy test.
    self._setup()
    self._specify_common_flags()
    self._specify_gpu_mwms_flags()
    FLAGS.train_batch_size = 96
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 3
    FLAGS.steps_per_loop = 5000
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_accuracy_mwms_1x8_gpu_fp16_seq128_15k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Set train_summary_interval to -1 to disable training summary, because
    # writing summary to gcs may fail and summaries are not needed for this
    # accuracy benchmark test.
    FLAGS.train_summary_interval = -1
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=True,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_accuracy_mwms_2x8_gpu_fp16_seq128_15k_steps(self):
    """Test bert pretraining with 2x8 GPU for 15k steps."""
    # This is used for accuracy test.
    self._setup()
    self._specify_common_flags()
    self._specify_gpu_mwms_flags()
    # ues the same global batch size as accuracy_mwms_1x8 benchmark.
    FLAGS.train_batch_size = 96
    FLAGS.num_steps_per_epoch = 5000
    FLAGS.num_train_epochs = 3
    FLAGS.steps_per_loop = 5000
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_accuracy_mwms_2x8_gpu_fp16_seq128_15k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Set train_summary_interval to -1 to disable training summary, because
    # writing summary to gcs may fail and summaries are not needed for this
    # accuracy benchmark test.
    FLAGS.train_summary_interval = -1
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=True,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_perf_mwms_1x8_gpu_fp16_seq128_200_steps(self):
    """Test bert pretraining with 1x8 GPU for 200 steps."""
    self._setup()
    self._specify_common_flags()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
435
    self._specify_gpu_mwms_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    FLAGS.num_steps_per_epoch = 200
    FLAGS.num_train_epochs = 1
    FLAGS.train_batch_size = 96 * 1
    FLAGS.steps_per_loop = 100
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_mwms_1x8_gpu_fp16_seq128_200_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_perf_mwms_2x8_gpu_fp16_seq128_200_steps(self):
    """Test bert pretraining with 2x8 GPU for 200 steps."""
    self._setup()
    self._specify_common_flags()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
455
    self._specify_gpu_mwms_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    FLAGS.num_steps_per_epoch = 200
    FLAGS.num_train_epochs = 1
    FLAGS.train_batch_size = 96 * 2
    FLAGS.steps_per_loop = 100
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_mwms_2x8_gpu_fp16_seq128_200_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)

  @owner_utils.Owner('tf-dist-strat')
  def benchmark_perf_mwms_8x8_gpu_fp16_seq128_200_steps(self):
    """Test bert pretraining with 8x8 GPU for 200 steps."""
    self._setup()
    self._specify_common_flags()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
475
    self._specify_gpu_mwms_flags()
Zongwei Zhou's avatar
Zongwei Zhou committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    FLAGS.num_steps_per_epoch = 200
    FLAGS.num_train_epochs = 1
    FLAGS.train_batch_size = 96*8
    FLAGS.steps_per_loop = 100
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_perf_mwms_8x8_gpu_fp16_seq128_200_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    # Disable accuracy check.
    self._run_and_report_benchmark(
        summary_path=summary_path,
        report_accuracy=False,
        ds_type=FLAGS.distribution_strategy)


Chen Chen's avatar
Chen Chen committed
491
492
if __name__ == '__main__':
  tf.test.main()