bert_pretrain_benchmark.py 5.49 KB
Newer Older
Chen Chen's avatar
Chen Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes benchmark testing for bert pretraining."""
# pylint: disable=line-too-long
from __future__ import print_function

import json
import os
import time
from typing import Optional

from absl import flags
from absl import logging
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.benchmark import benchmark_wrappers
from official.benchmark import bert_benchmark_utils
from official.nlp.bert import run_pretraining
from official.utils.flags import core as flags_core
from official.utils.misc import distribution_utils

# Pretrain masked lanauge modeling accuracy range:
MIN_MLM_ACCURACY = 0.65
MAX_MLM_ACCURACY = 0.66

# Pretrain next sentence prediction accuracy range:
MIN_NSP_ACCURACY = 0.95
MAX_NSP_ACCURACY = 0.98

BERT_PRETRAIN_FILES_SEQ128 = 'gs://mlcompass-data/bert/pretraining_data/seq_128/wikipedia.tfrecord*,gs://mlcompass-data/bert/pretraining_data/seq_128/books.tfrecord*'
BERT_BASE_CONFIG_FILE = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-12_H-768_A-12/bert_config.json'

FLAGS = flags.FLAGS


class BertPretrainAccuracyBenchmark(bert_benchmark_utils.BertBenchmarkBase):
  """Benchmark accuracy tests for BERT Pretraining."""

  def __init__(self,
               output_dir: Optional[str] = None,
               tpu: Optional[str] = None):
    """Inits BertPretrainAccuracyBenchmark class.

    Args:
      output_dir: Directory where to output e.g. log files
      tpu: TPU name to use in a TPU benchmark.
    """
    super(BertPretrainAccuracyBenchmark, self).__init__(
        output_dir=output_dir, tpu=tpu)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self, summary_path: str):
    """Runs and reports the benchmark given the provided configuration."""
    distribution = distribution_utils.get_distribution_strategy(
        distribution_strategy='tpu', tpu_address=FLAGS.tpu)
    logging.info('Flags: %s', flags_core.get_nondefault_flags_as_str())
    start_time_sec = time.time()
    run_pretraining.run_bert_pretrain(
        strategy=distribution, custom_callbacks=self.timer_callback)
    wall_time_sec = time.time() - start_time_sec

    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      summary = json.loads(reader.read().decode('utf-8'))
    self._report_benchmark(summary, start_time_sec, wall_time_sec)

  def _report_benchmark(self, summary, start_time_sec, wall_time_sec):
    metrics = [{
        'name': 'train_loss',
        'value': summary['train_loss'],
    }, {
        'name':
            'example_per_second',
        'value':
            self.timer_callback.get_examples_per_sec(FLAGS.train_batch_size *
                                                     FLAGS.steps_per_loop)
    }, {
        'name': 'startup_time',
        'value': self.timer_callback.get_startup_time(start_time_sec)
    }, {
        'name': 'masked_lm_accuracy',
        'value': summary['masked_lm_accuracy'],
        'min_value': MIN_MLM_ACCURACY,
        'max_value': MAX_MLM_ACCURACY,
    }, {
        'name': 'next_sentence_accuracy',
        'value': summary['next_sentence_accuracy'],
        'min_value': MIN_NSP_ACCURACY,
        'max_value': MAX_NSP_ACCURACY,
    }]
    self.report_benchmark(
        iters=summary['total_training_steps'],
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_core.get_nondefault_flags_as_str()})

  def _specify_common_flags(self):
    FLAGS.bert_config_file = BERT_BASE_CONFIG_FILE
    FLAGS.train_batch_size = 512
    FLAGS.learning_rate = 1e-4
    FLAGS.warmup_steps = 10000
    FLAGS.steps_per_loop = 1000
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.input_files = BERT_PRETRAIN_FILES_SEQ128
    FLAGS.max_seq_length = 128
    FLAGS.max_predictions_per_seq = 20
    FLAGS.dtype = 'bf16'

  def benchmark_8x8_tpu_bf16_seq128_1m_steps(self):
    """Test bert pretraining with 8x8 TPU for 1 million steps."""
    # This is used for accuracy test.
    self._setup()
    self._specify_common_flags()
    FLAGS.num_steps_per_epoch = 25000
    FLAGS.num_train_epochs = 40
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8x8_tpu_bf16_seq128_1m_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    self._run_and_report_benchmark(summary_path=summary_path)

  def benchmark_4x4_tpu_bf16_seq128_1k_steps(self):
    """Test bert pretraining with 4x4 TPU for 1000 steps."""
    # This is used for througput test.
    self._setup()
    self._specify_common_flags()
    FLAGS.num_steps_per_epoch = 1000
    FLAGS.num_train_epochs = 1
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_4x4_tpu_bf16_seq128_1k_steps')
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
    self._run_and_report_benchmark(summary_path=summary_path)


if __name__ == '__main__':
  tf.test.main()