create_finetuning_data.py 14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT finetuning task dataset generator."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import functools
22
import json
23
import os
24
25
26
27

from absl import app
from absl import flags
import tensorflow as tf
28
29
from official.nlp.bert import tokenization
from official.nlp.data import classifier_data_lib
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
30
from official.nlp.data import sentence_retrieval_lib
31
# word-piece tokenizer based squad_lib
32
from official.nlp.data import squad_lib as squad_lib_wp
33
# sentence-piece tokenizer based squad_lib
34
from official.nlp.data import squad_lib_sp
35
from official.nlp.data import tagging_data_lib
36
37
38

FLAGS = flags.FLAGS

39
# TODO(chendouble): consider moving each task to its own binary.
40
flags.DEFINE_enum(
Maxim Neumann's avatar
Maxim Neumann committed
41
    "fine_tuning_task_type", "classification",
42
    ["classification", "regression", "squad", "retrieval", "tagging"],
43
    "The name of the BERT fine tuning task for which data "
44
    "will be generated.")
45

46
# BERT classification specific flags.
47
48
49
50
51
flags.DEFINE_string(
    "input_data_dir", None,
    "The input data dir. Should contain the .tsv files (or other data files) "
    "for the task.")

52
flags.DEFINE_enum("classification_task_name", "MNLI",
53
                  ["COLA", "MNLI", "MRPC", "PAWS-X", "QNLI", "QQP", "RTE",
54
55
                   "SST-2", "STS-B", "WNLI", "XNLI", "XTREME-XNLI",
                   "XTREME-PAWS-X"],
Tianqi Liu's avatar
Tianqi Liu committed
56
57
58
59
60
                  "The name of the task to train BERT classifier. The "
                  "difference between XTREME-XNLI and XNLI is: 1. the format "
                  "of input tsv files; 2. the dev set for XTREME is english "
                  "only and for XNLI is all languages combined. Same for "
                  "PAWS-X.")
61

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
62
63
64
65
66
67
# MNLI task-specific flag.
flags.DEFINE_enum(
    "mnli_type", "matched", ["matched", "mismatched"],
    "The type of MNLI dataset.")

# XNLI task-specific flag.
Tianqi Liu's avatar
Tianqi Liu committed
68
69
flags.DEFINE_string(
    "xnli_language", "en",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
    "Language of training data for XNLI task. If the value is 'all', the data "
Tianqi Liu's avatar
Tianqi Liu committed
71
72
    "of all languages will be used for training.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
# PAWS-X task-specific flag.
Tianqi Liu's avatar
Tianqi Liu committed
74
75
flags.DEFINE_string(
    "pawsx_language", "en",
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
    "Language of training data for PAWS-X task. If the value is 'all', the data "
Tianqi Liu's avatar
Tianqi Liu committed
77
    "of all languages will be used for training.")
Tianqi Liu's avatar
Tianqi Liu committed
78

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
79
# Retrieval task-specific flags.
80
81
82
flags.DEFINE_enum("retrieval_task_name", "bucc", ["bucc", "tatoeba"],
                  "The name of sentence retrieval task for scoring")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
83
# Tagging task-specific flags.
84
85
86
flags.DEFINE_enum("tagging_task_name", "panx", ["panx", "udpos"],
                  "The name of BERT tagging (token classification) task.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
87
# BERT Squad task-specific flags.
88
89
90
91
92
93
94
95
96
97
98
99
100
101
flags.DEFINE_string(
    "squad_data_file", None,
    "The input data file in for generating training data for BERT squad task.")

flags.DEFINE_integer(
    "doc_stride", 128,
    "When splitting up a long document into chunks, how much stride to "
    "take between chunks.")

flags.DEFINE_integer(
    "max_query_length", 64,
    "The maximum number of tokens for the question. Questions longer than "
    "this will be truncated to this length.")

102
103
104
105
flags.DEFINE_bool(
    "version_2_with_negative", False,
    "If true, the SQuAD examples contain some that do not have an answer.")

106
107
108
109
110
111
# Shared flags across BERT fine-tuning tasks.
flags.DEFINE_string("vocab_file", None,
                    "The vocabulary file that the BERT model was trained on.")

flags.DEFINE_string(
    "train_data_output_path", None,
112
    "The path in which generated training input data will be written as tf"
113
    " records.")
114
115
116

flags.DEFINE_string(
    "eval_data_output_path", None,
Tianqi Liu's avatar
Tianqi Liu committed
117
    "The path in which generated evaluation input data will be written as tf"
118
    " records.")
119

Tianqi Liu's avatar
Tianqi Liu committed
120
121
122
flags.DEFINE_string(
    "test_data_output_path", None,
    "The path in which generated test input data will be written as tf"
Tianqi Liu's avatar
Tianqi Liu committed
123
124
    " records. If None, do not generate test data. Must be a pattern template"
    " as test_{}.tfrecords if processor has language specific test data.")
Tianqi Liu's avatar
Tianqi Liu committed
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
flags.DEFINE_string("meta_data_file_path", None,
                    "The path in which input meta data will be written.")

flags.DEFINE_bool(
    "do_lower_case", True,
    "Whether to lower case the input text. Should be True for uncased "
    "models and False for cased models.")

flags.DEFINE_integer(
    "max_seq_length", 128,
    "The maximum total input sequence length after WordPiece tokenization. "
    "Sequences longer than this will be truncated, and sequences shorter "
    "than this will be padded.")

140
141
142
143
144
145
146
147
148
flags.DEFINE_string("sp_model_file", "",
                    "The path to the model used by sentence piece tokenizer.")

flags.DEFINE_enum(
    "tokenizer_impl", "word_piece", ["word_piece", "sentence_piece"],
    "Specifies the tokenizer implementation, i.e., whehter to use word_piece "
    "or sentence_piece tokenizer. Canonical BERT uses word_piece tokenizer, "
    "while ALBERT uses sentence_piece tokenizer.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
149
150
151
152
153
flags.DEFINE_string("tfds_params", "",
                    "Comma-separated list of TFDS parameter assigments for "
                    "generic classfication data import (for more details "
                    "see the TfdsProcessor class documentation).")

154
155
156

def generate_classifier_dataset():
  """Generates classifier dataset and returns input meta data."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
157
158
  assert (FLAGS.input_data_dir and FLAGS.classification_task_name
          or FLAGS.tfds_params)
159

160
161
162
163
164
165
166
167
168
169
  if FLAGS.tokenizer_impl == "word_piece":
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
170
171
172
173
174
175
176
177
178
179
  if FLAGS.tfds_params:
    processor = classifier_data_lib.TfdsProcessor(
        tfds_params=FLAGS.tfds_params,
        process_text_fn=processor_text_fn)
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        None,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
Tianqi Liu's avatar
Tianqi Liu committed
180
        test_data_output_path=FLAGS.test_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
181
182
183
        max_seq_length=FLAGS.max_seq_length)
  else:
    processors = {
Tianqi Liu's avatar
Tianqi Liu committed
184
185
186
        "cola":
            classifier_data_lib.ColaProcessor,
        "mnli":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
187
188
            functools.partial(classifier_data_lib.MnliProcessor,
                              mnli_type=FLAGS.mnli_type),
Tianqi Liu's avatar
Tianqi Liu committed
189
190
191
192
        "mrpc":
            classifier_data_lib.MrpcProcessor,
        "qnli":
            classifier_data_lib.QnliProcessor,
Saurabh Saxena's avatar
Saurabh Saxena committed
193
        "qqp": classifier_data_lib.QqpProcessor,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
194
        "rte": classifier_data_lib.RteProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
195
196
        "sst-2":
            classifier_data_lib.SstProcessor,
197
198
        "sts-b":
            classifier_data_lib.StsBProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
199
200
201
        "xnli":
            functools.partial(classifier_data_lib.XnliProcessor,
                              language=FLAGS.xnli_language),
Tianqi Liu's avatar
Tianqi Liu committed
202
203
        "paws-x":
            functools.partial(classifier_data_lib.PawsxProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
204
                              language=FLAGS.pawsx_language),
205
        "wnli": classifier_data_lib.WnliProcessor,
Tianqi Liu's avatar
Tianqi Liu committed
206
207
208
209
        "xtreme-xnli":
            functools.partial(classifier_data_lib.XtremeXnliProcessor),
        "xtreme-paws-x":
            functools.partial(classifier_data_lib.XtremePawsxProcessor)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
211
212
213
214
    }
    task_name = FLAGS.classification_task_name.lower()
    if task_name not in processors:
      raise ValueError("Task not found: %s" % (task_name))

Tianqi Liu's avatar
Tianqi Liu committed
215
    processor = processors[task_name](process_text_fn=processor_text_fn)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
216
217
218
219
220
221
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        FLAGS.input_data_dir,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
Tianqi Liu's avatar
Tianqi Liu committed
222
        test_data_output_path=FLAGS.test_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
223
        max_seq_length=FLAGS.max_seq_length)
224
225


Maxim Neumann's avatar
Maxim Neumann committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
def generate_regression_dataset():
  """Generates regression dataset and returns input meta data."""
  if FLAGS.tokenizer_impl == "word_piece":
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

  if FLAGS.tfds_params:
    processor = classifier_data_lib.TfdsProcessor(
        tfds_params=FLAGS.tfds_params,
        process_text_fn=processor_text_fn)
    return classifier_data_lib.generate_tf_record_from_data_file(
        processor,
        None,
        tokenizer,
        train_data_output_path=FLAGS.train_data_output_path,
        eval_data_output_path=FLAGS.eval_data_output_path,
        test_data_output_path=FLAGS.test_data_output_path,
        max_seq_length=FLAGS.max_seq_length)
  else:
    raise ValueError("No data processor found for the given regression task.")


254
255
256
def generate_squad_dataset():
  """Generates squad training dataset and returns input meta data."""
  assert FLAGS.squad_data_file
257
258
259
260
261
262
263
264
265
266
267
  if FLAGS.tokenizer_impl == "word_piece":
    return squad_lib_wp.generate_tf_record_from_json_file(
        FLAGS.squad_data_file, FLAGS.vocab_file, FLAGS.train_data_output_path,
        FLAGS.max_seq_length, FLAGS.do_lower_case, FLAGS.max_query_length,
        FLAGS.doc_stride, FLAGS.version_2_with_negative)
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    return squad_lib_sp.generate_tf_record_from_json_file(
        FLAGS.squad_data_file, FLAGS.sp_model_file,
        FLAGS.train_data_output_path, FLAGS.max_seq_length, FLAGS.do_lower_case,
        FLAGS.max_query_length, FLAGS.doc_stride, FLAGS.version_2_with_negative)
268
269


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
def generate_retrieval_dataset():
  """Generate retrieval test and dev dataset and returns input meta data."""
  assert (FLAGS.input_data_dir and FLAGS.retrieval_task_name)
  if FLAGS.tokenizer_impl == "word_piece":
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)

  processors = {
      "bucc": sentence_retrieval_lib.BuccProcessor,
      "tatoeba": sentence_retrieval_lib.TatoebaProcessor,
  }

  task_name = FLAGS.retrieval_task_name.lower()
  if task_name not in processors:
    raise ValueError("Task not found: %s" % task_name)

  processor = processors[task_name](process_text_fn=processor_text_fn)

  return sentence_retrieval_lib.generate_sentence_retrevial_tf_record(
      processor,
      FLAGS.input_data_dir,
      tokenizer,
      FLAGS.eval_data_output_path,
      FLAGS.test_data_output_path,
      FLAGS.max_seq_length)


303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def generate_tagging_dataset():
  """Generates tagging dataset."""
  processors = {
      "panx": tagging_data_lib.PanxProcessor,
      "udpos": tagging_data_lib.UdposProcessor,
  }
  task_name = FLAGS.tagging_task_name.lower()
  if task_name not in processors:
    raise ValueError("Task not found: %s" % task_name)

  if FLAGS.tokenizer_impl == "word_piece":
    tokenizer = tokenization.FullTokenizer(
        vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
    processor_text_fn = tokenization.convert_to_unicode
  elif FLAGS.tokenizer_impl == "sentence_piece":
    tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
    processor_text_fn = functools.partial(
        tokenization.preprocess_text, lower=FLAGS.do_lower_case)
  else:
    raise ValueError("Unsupported tokenizer_impl: %s" % FLAGS.tokenizer_impl)

  processor = processors[task_name]()
  return tagging_data_lib.generate_tf_record_from_data_file(
      processor, FLAGS.input_data_dir, tokenizer, FLAGS.max_seq_length,
      FLAGS.train_data_output_path, FLAGS.eval_data_output_path,
      FLAGS.test_data_output_path, processor_text_fn)


331
def main(_):
332
333
334
335
336
337
338
339
340
341
  if FLAGS.tokenizer_impl == "word_piece":
    if not FLAGS.vocab_file:
      raise ValueError(
          "FLAG vocab_file for word-piece tokenizer is not specified.")
  else:
    assert FLAGS.tokenizer_impl == "sentence_piece"
    if not FLAGS.sp_model_file:
      raise ValueError(
          "FLAG sp_model_file for sentence-piece tokenizer is not specified.")

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
342
343
344
  if FLAGS.fine_tuning_task_type != "retrieval":
    flags.mark_flag_as_required("train_data_output_path")

345
346
  if FLAGS.fine_tuning_task_type == "classification":
    input_meta_data = generate_classifier_dataset()
Maxim Neumann's avatar
Maxim Neumann committed
347
348
  elif FLAGS.fine_tuning_task_type == "regression":
    input_meta_data = generate_regression_dataset()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
349
350
  elif FLAGS.fine_tuning_task_type == "retrieval":
    input_meta_data = generate_retrieval_dataset()
351
  elif FLAGS.fine_tuning_task_type == "squad":
352
    input_meta_data = generate_squad_dataset()
353
354
355
  else:
    assert FLAGS.fine_tuning_task_type == "tagging"
    input_meta_data = generate_tagging_dataset()
356

357
  tf.io.gfile.makedirs(os.path.dirname(FLAGS.meta_data_file_path))
358
359
360
361
362
363
364
  with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer:
    writer.write(json.dumps(input_meta_data, indent=4) + "\n")


if __name__ == "__main__":
  flags.mark_flag_as_required("meta_data_file_path")
  app.run(main)