keras_utils.py 7.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions for the Keras implementations of models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import multiprocessing
import os
23
24
import time

25
from absl import logging
26
import tensorflow as tf
27

28
29
30
31
32
from tensorflow.python.eager import monitoring

global_batch_size_gauge = monitoring.IntGauge(
    '/tensorflow/training/global_batch_size', 'TF training global batch size')

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
34
35
36
first_batch_start_time = monitoring.IntGauge(
    '/tensorflow/training/first_batch_start',
    'TF training start time (unix epoch time in us.')

37

38
39
40
41
42
43
44
class BatchTimestamp(object):
  """A structure to store batch time stamp."""

  def __init__(self, batch_index, timestamp):
    self.batch_index = batch_index
    self.timestamp = timestamp

45
46
47
48
  def __repr__(self):
    return "'BatchTimestamp<batch_index: {}, timestamp: {}>'".format(
        self.batch_index, self.timestamp)

49
50
51
52

class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

Abdullah Rashwan's avatar
Abdullah Rashwan committed
53
  def __init__(self, batch_size, log_steps, initial_step=0, logdir=None):
54
    """Callback for logging performance.
Shining Sun's avatar
Shining Sun committed
55

56
57
    Args:
      batch_size: Total batch size.
58
      log_steps: Interval of steps between logging of batch level stats.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
59
      initial_step: Optional, initial step.
60
      logdir: Optional directory to write TensorBoard summaries.
61
    """
62
63
    # TODO(wcromar): remove this parameter and rely on `logs` parameter of
    # on_train_batch_end()
64
65
66
    self.batch_size = batch_size
    super(TimeHistory, self).__init__()
    self.log_steps = log_steps
Abdullah Rashwan's avatar
Abdullah Rashwan committed
67
68
    self.last_log_step = initial_step
    self.steps_before_epoch = initial_step
69
70
71
    self.steps_in_epoch = 0
    self.start_time = None

72
73
    global_batch_size_gauge.get_cell().set(batch_size)

74
75
76
77
    if logdir:
      self.summary_writer = tf.summary.create_file_writer(logdir)
    else:
      self.summary_writer = None
78

79
    # Logs start of step 1 then end of each step based on log_steps interval.
80
81
    self.timestamp_log = []

82
83
84
    # Records the time each epoch takes to run from start to finish of epoch.
    self.epoch_runtime_log = []

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
  @property
  def global_steps(self):
    """The current 1-indexed global step."""
    return self.steps_before_epoch + self.steps_in_epoch

  @property
  def average_steps_per_second(self):
    """The average training steps per second across all epochs."""
    return self.global_steps / sum(self.epoch_runtime_log)

  @property
  def average_examples_per_second(self):
    """The average number of training examples per second across all epochs."""
    return self.average_steps_per_second * self.batch_size

Hongkun Yu's avatar
Hongkun Yu committed
100
101
102
103
104
105
106
107
108
109
110
111
  def get_examples_per_sec(self, warmup=1):
    """Calculates examples/sec through timestamp_log and skip warmup period."""
    # First entry in timestamp_log is the start of the step 1. The rest of the
    # entries are the end of each step recorded.
    time_log = self.timestamp_log
    seconds = time_log[-1].timestamp - time_log[warmup].timestamp
    steps = time_log[-1].batch_index - time_log[warmup].batch_index
    return self.batch_size * steps / seconds

  def get_startup_time(self, start_time_sec):
    return self.timestamp_log[0].timestamp - start_time_sec

112
113
114
  def on_train_end(self, logs=None):
    self.train_finish_time = time.time()

115
116
117
    if self.summary_writer:
      self.summary_writer.flush()

118
119
120
  def on_epoch_begin(self, epoch, logs=None):
    self.epoch_start = time.time()

121
  def on_batch_begin(self, batch, logs=None):
122
    if not self.start_time:
123
      self.start_time = time.time()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
124
125
      if not first_batch_start_time.get_cell().value():
        first_batch_start_time.get_cell().set(int(self.start_time * 1000000))
126
127
128

    # Record the timestamp of the first global step
    if not self.timestamp_log:
Hongkun Yu's avatar
Hongkun Yu committed
129
130
      self.timestamp_log.append(
          BatchTimestamp(self.global_steps, self.start_time))
131
132

  def on_batch_end(self, batch, logs=None):
133
    """Records elapse time of the batch and calculates examples per second."""
134
135
136
137
138
139
140
141
142
    self.steps_in_epoch = batch + 1
    steps_since_last_log = self.global_steps - self.last_log_step
    if steps_since_last_log >= self.log_steps:
      now = time.time()
      elapsed_time = now - self.start_time
      steps_per_second = steps_since_last_log / elapsed_time
      examples_per_second = steps_per_second * self.batch_size

      self.timestamp_log.append(BatchTimestamp(self.global_steps, now))
143
      logging.info(
144
145
146
          'TimeHistory: %.2f seconds, %.2f examples/second between steps %d '
          'and %d', elapsed_time, examples_per_second, self.last_log_step,
          self.global_steps)
147
148
149

      if self.summary_writer:
        with self.summary_writer.as_default():
Hongkun Yu's avatar
Hongkun Yu committed
150
          tf.summary.scalar('steps_per_second', steps_per_second,
151
                            self.global_steps)
Hongkun Yu's avatar
Hongkun Yu committed
152
          tf.summary.scalar('examples_per_second', examples_per_second,
153
154
155
156
                            self.global_steps)

      self.last_log_step = self.global_steps
      self.start_time = None
157

158
159
160
  def on_epoch_end(self, epoch, logs=None):
    epoch_run_time = time.time() - self.epoch_start
    self.epoch_runtime_log.append(epoch_run_time)
161
162
163

    self.steps_before_epoch += self.steps_in_epoch
    self.steps_in_epoch = 0
164

165

166
167
168
169
170
171
172
173
174
175
176
177
class SimpleCheckpoint(tf.keras.callbacks.Callback):
  """Keras callback to save tf.train.Checkpoints."""

  def __init__(self, checkpoint_manager):
    super(SimpleCheckpoint, self).__init__()
    self.checkpoint_manager = checkpoint_manager

  def on_epoch_end(self, epoch, logs=None):
    step_counter = self.checkpoint_manager._step_counter.numpy()  # pylint: disable=protected-access
    self.checkpoint_manager.save(checkpoint_number=step_counter)


178
def set_session_config(enable_xla=False):
Toby Boyd's avatar
Toby Boyd committed
179
180
181
182
  """Sets the session config."""
  if enable_xla:
    tf.config.optimizer.set_jit(True)

Hongkun Yu's avatar
Hongkun Yu committed
183

184
185
# TODO(hongkuny): remove set_config_v2 globally.
set_config_v2 = set_session_config
186
187


Hongkun Yu's avatar
Hongkun Yu committed
188
def set_gpu_thread_mode_and_count(gpu_thread_mode, datasets_num_private_threads,
189
190
191
192
193
194
195
196
197
                                  num_gpus, per_gpu_thread_count):
  """Set GPU thread mode and count, and adjust dataset threads count."""
  cpu_count = multiprocessing.cpu_count()
  logging.info('Logical CPU cores: %s', cpu_count)

  # Allocate private thread pool for each GPU to schedule and launch kernels
  per_gpu_thread_count = per_gpu_thread_count or 2
  os.environ['TF_GPU_THREAD_MODE'] = gpu_thread_mode
  os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
Hongkun Yu's avatar
Hongkun Yu committed
198
199
  logging.info('TF_GPU_THREAD_COUNT: %s', os.environ['TF_GPU_THREAD_COUNT'])
  logging.info('TF_GPU_THREAD_MODE: %s', os.environ['TF_GPU_THREAD_MODE'])
200
201
202
203
204
205
206

  # Limit data preprocessing threadpool to CPU cores minus number of total GPU
  # private threads and memory copy threads.
  total_gpu_thread_count = per_gpu_thread_count * num_gpus
  num_runtime_threads = num_gpus
  if not datasets_num_private_threads:
    datasets_num_private_threads = min(
Hongkun Yu's avatar
Hongkun Yu committed
207
        cpu_count - total_gpu_thread_count - num_runtime_threads, num_gpus * 8)
208
209
    logging.info('Set datasets_num_private_threads to %s',
                 datasets_num_private_threads)