keras_utils.py 7.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions for the Keras implementations of models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import multiprocessing
import os
23
24
import time

25
from absl import logging
26
import tensorflow as tf
27
28
29
30
31
32
33
34
35


class BatchTimestamp(object):
  """A structure to store batch time stamp."""

  def __init__(self, batch_index, timestamp):
    self.batch_index = batch_index
    self.timestamp = timestamp

36
37
38
39
  def __repr__(self):
    return "'BatchTimestamp<batch_index: {}, timestamp: {}>'".format(
        self.batch_index, self.timestamp)

40
41
42
43

class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

44
  def __init__(self, batch_size, log_steps, logdir=None):
45
    """Callback for logging performance.
Shining Sun's avatar
Shining Sun committed
46

47
48
    Args:
      batch_size: Total batch size.
49
      log_steps: Interval of steps between logging of batch level stats.
50
      logdir: Optional directory to write TensorBoard summaries.
51
    """
52
53
    # TODO(wcromar): remove this parameter and rely on `logs` parameter of
    # on_train_batch_end()
54
55
56
    self.batch_size = batch_size
    super(TimeHistory, self).__init__()
    self.log_steps = log_steps
57
58
59
60
61
62
63
64
65
    self.last_log_step = 0
    self.steps_before_epoch = 0
    self.steps_in_epoch = 0
    self.start_time = None

    if logdir:
      self.summary_writer = tf.summary.create_file_writer(logdir)
    else:
      self.summary_writer = None
66

67
    # Logs start of step 1 then end of each step based on log_steps interval.
68
69
    self.timestamp_log = []

70
71
72
    # Records the time each epoch takes to run from start to finish of epoch.
    self.epoch_runtime_log = []

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
  @property
  def global_steps(self):
    """The current 1-indexed global step."""
    return self.steps_before_epoch + self.steps_in_epoch

  @property
  def average_steps_per_second(self):
    """The average training steps per second across all epochs."""
    return self.global_steps / sum(self.epoch_runtime_log)

  @property
  def average_examples_per_second(self):
    """The average number of training examples per second across all epochs."""
    return self.average_steps_per_second * self.batch_size

Hongkun Yu's avatar
Hongkun Yu committed
88
89
90
91
92
93
94
95
96
97
98
99
  def get_examples_per_sec(self, warmup=1):
    """Calculates examples/sec through timestamp_log and skip warmup period."""
    # First entry in timestamp_log is the start of the step 1. The rest of the
    # entries are the end of each step recorded.
    time_log = self.timestamp_log
    seconds = time_log[-1].timestamp - time_log[warmup].timestamp
    steps = time_log[-1].batch_index - time_log[warmup].batch_index
    return self.batch_size * steps / seconds

  def get_startup_time(self, start_time_sec):
    return self.timestamp_log[0].timestamp - start_time_sec

100
101
102
  def on_train_end(self, logs=None):
    self.train_finish_time = time.time()

103
104
105
    if self.summary_writer:
      self.summary_writer.flush()

106
107
108
  def on_epoch_begin(self, epoch, logs=None):
    self.epoch_start = time.time()

109
  def on_batch_begin(self, batch, logs=None):
110
    if not self.start_time:
111
      self.start_time = time.time()
112
113
114

    # Record the timestamp of the first global step
    if not self.timestamp_log:
115
116
      self.timestamp_log.append(BatchTimestamp(self.global_steps,
                                               self.start_time))
117
118

  def on_batch_end(self, batch, logs=None):
119
    """Records elapse time of the batch and calculates examples per second."""
120
121
122
123
124
125
126
127
128
    self.steps_in_epoch = batch + 1
    steps_since_last_log = self.global_steps - self.last_log_step
    if steps_since_last_log >= self.log_steps:
      now = time.time()
      elapsed_time = now - self.start_time
      steps_per_second = steps_since_last_log / elapsed_time
      examples_per_second = steps_per_second * self.batch_size

      self.timestamp_log.append(BatchTimestamp(self.global_steps, now))
129
      logging.info(
130
131
132
          'TimeHistory: %.2f seconds, %.2f examples/second between steps %d '
          'and %d', elapsed_time, examples_per_second, self.last_log_step,
          self.global_steps)
133
134
135

      if self.summary_writer:
        with self.summary_writer.as_default():
Hongkun Yu's avatar
Hongkun Yu committed
136
          tf.summary.scalar('steps_per_second', steps_per_second,
137
                            self.global_steps)
Hongkun Yu's avatar
Hongkun Yu committed
138
          tf.summary.scalar('examples_per_second', examples_per_second,
139
140
141
142
                            self.global_steps)

      self.last_log_step = self.global_steps
      self.start_time = None
143

144
145
146
  def on_epoch_end(self, epoch, logs=None):
    epoch_run_time = time.time() - self.epoch_start
    self.epoch_runtime_log.append(epoch_run_time)
147
148
149

    self.steps_before_epoch += self.steps_in_epoch
    self.steps_in_epoch = 0
150

151

152
153
154
155
156
157
158
159
160
161
162
163
class SimpleCheckpoint(tf.keras.callbacks.Callback):
  """Keras callback to save tf.train.Checkpoints."""

  def __init__(self, checkpoint_manager):
    super(SimpleCheckpoint, self).__init__()
    self.checkpoint_manager = checkpoint_manager

  def on_epoch_end(self, epoch, logs=None):
    step_counter = self.checkpoint_manager._step_counter.numpy()  # pylint: disable=protected-access
    self.checkpoint_manager.save(checkpoint_number=step_counter)


164
def set_session_config(enable_xla=False):
Toby Boyd's avatar
Toby Boyd committed
165
166
167
168
  """Sets the session config."""
  if enable_xla:
    tf.config.optimizer.set_jit(True)

169
170
# TODO(hongkuny): remove set_config_v2 globally.
set_config_v2 = set_session_config
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198


def set_gpu_thread_mode_and_count(gpu_thread_mode,
                                  datasets_num_private_threads,
                                  num_gpus, per_gpu_thread_count):
  """Set GPU thread mode and count, and adjust dataset threads count."""
  cpu_count = multiprocessing.cpu_count()
  logging.info('Logical CPU cores: %s', cpu_count)

  # Allocate private thread pool for each GPU to schedule and launch kernels
  per_gpu_thread_count = per_gpu_thread_count or 2
  os.environ['TF_GPU_THREAD_MODE'] = gpu_thread_mode
  os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
  logging.info('TF_GPU_THREAD_COUNT: %s',
               os.environ['TF_GPU_THREAD_COUNT'])
  logging.info('TF_GPU_THREAD_MODE: %s',
               os.environ['TF_GPU_THREAD_MODE'])

  # Limit data preprocessing threadpool to CPU cores minus number of total GPU
  # private threads and memory copy threads.
  total_gpu_thread_count = per_gpu_thread_count * num_gpus
  num_runtime_threads = num_gpus
  if not datasets_num_private_threads:
    datasets_num_private_threads = min(
        cpu_count - total_gpu_thread_count - num_runtime_threads,
        num_gpus * 8)
    logging.info('Set datasets_num_private_threads to %s',
                 datasets_num_private_threads)