keras_utils.py 2.53 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions for the Keras implementations of models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time

from absl import flags
import tensorflow as tf


class BatchTimestamp(object):
  """A structure to store batch time stamp."""

  def __init__(self, batch_index, timestamp):
    self.batch_index = batch_index
    self.timestamp = timestamp


class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

  def __init__(self, batch_size, log_steps):
    """Callback for logging performance (# examples/second).
Shining Sun's avatar
Shining Sun committed
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    Args:
      batch_size: Total batch size.
      log_steps: Interval of time history logs.

    """
    self.batch_size = batch_size
    super(TimeHistory, self).__init__()
    self.log_steps = log_steps

    # Logs start of step 0 then end of each step based on log_steps interval.
    self.timestamp_log = []

  def on_train_begin(self, logs=None):
    self.record_batch = True

  def on_train_end(self, logs=None):
    self.train_finish_time = time.time()

  def on_batch_begin(self, batch, logs=None):
    if self.record_batch:
      timestamp = time.time()
      self.start_time = timestamp
      self.record_batch = False
      if batch == 0:
        self.timestamp_log.append(BatchTimestamp(batch, timestamp))

  def on_batch_end(self, batch, logs=None):
    if batch % self.log_steps == 0:
      timestamp = time.time()
      elapsed_time = timestamp - self.start_time
      examples_per_second = (self.batch_size * self.log_steps) / elapsed_time
      if batch != 0:
        self.record_batch = True
        self.timestamp_log.append(BatchTimestamp(batch, timestamp))
        tf.compat.v1.logging.info(
            "BenchmarkMetric: {'num_batches':%d, 'time_taken': %f,"
            "'examples_per_second': %f}" %
            (batch, elapsed_time, examples_per_second))