imagenet_main.py 6.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
22
import sys
23
24
25

import tensorflow as tf

Karmel Allison's avatar
Karmel Allison committed
26
import resnet
27
28
import vgg_preprocessing

29
_DEFAULT_IMAGE_SIZE = 224
30
_NUM_CHANNELS = 3
31
_NUM_CLASSES = 1001
32

33
34
35
36
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
37

38
_NUM_TRAIN_FILES = 1024
39
_SHUFFLE_BUFFER = 1500
40

41

42
43
44
###############################################################################
# Data processing
###############################################################################
45
def get_filenames(is_training, data_dir):
46
47
48
  """Return filenames for dataset."""
  if is_training:
    return [
49
        os.path.join(data_dir, 'train-%05d-of-01024' % i)
50
        for i in range(_NUM_TRAIN_FILES)]
51
52
  else:
    return [
53
        os.path.join(data_dir, 'validation-%05d-of-00128' % i)
Neal Wu's avatar
Neal Wu committed
54
        for i in range(128)]
55
56


57
def parse_record(raw_record, is_training):
58
  """Parse an ImageNet record from `value`."""
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
  keys_to_features = {
      'image/encoded':
          tf.FixedLenFeature((), tf.string, default_value=''),
      'image/format':
          tf.FixedLenFeature((), tf.string, default_value='jpeg'),
      'image/class/label':
          tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
      'image/class/text':
          tf.FixedLenFeature([], dtype=tf.string, default_value=''),
      'image/object/bbox/xmin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/xmax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/class/label':
          tf.VarLenFeature(dtype=tf.int64),
  }

80
  parsed = tf.parse_single_example(raw_record, keys_to_features)
81

82
83
84
85
86
  image = tf.image.decode_image(
      tf.reshape(parsed['image/encoded'], shape=[]),
      _NUM_CHANNELS)
  image = tf.image.convert_image_dtype(image, dtype=tf.float32)

87
  image = vgg_preprocessing.preprocess_image(
88
      image=image,
89
90
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
91
92
93
94
95
96
      is_training=is_training)

  label = tf.cast(
      tf.reshape(parsed['image/class/label'], shape=[]),
      dtype=tf.int32)

97
  return image, tf.one_hot(label, _NUM_CLASSES)
98
99


100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def input_fn(is_training, data_dir, batch_size, num_epochs=1,
             num_parallel_calls=1):
  """Input function which provides batches for train or eval.
  Args:
    is_training: A boolean denoting whether the input is for training.
    data_dir: The directory containing the input data.
    batch_size: The number of samples per batch.
    num_epochs: The number of epochs to repeat the dataset.
    num_parallel_calls: The number of records that are processed in parallel.
      This can be optimized per data set but for generally homogeneous data
      sets, should be approximately the number of available CPU cores.

  Returns:
    A dataset that can be used for iteration.
  """
  filenames = get_filenames(is_training, data_dir)
  dataset = tf.data.Dataset.from_tensor_slices(filenames)
117

118
  if is_training:
119
120
    # Shuffle the input files
    dataset = dataset.shuffle(buffer_size=_NUM_TRAIN_FILES)
121

122
  # Convert to individual records
123
  dataset = dataset.flat_map(tf.data.TFRecordDataset)
124

125
126
  return resnet.process_record_dataset(dataset, is_training, batch_size,
      _SHUFFLE_BUFFER, parse_record, num_epochs, num_parallel_calls)
127
128


129
130
131
###############################################################################
# Running the model
###############################################################################
Karmel Allison's avatar
Karmel Allison committed
132
class ImagenetModel(resnet.Model):
133
134
135
136
137
138
  def __init__(self, resnet_size, data_format=None):
    """These are the parameters that work for Imagenet data.
    """

    # For bigger models, we want to use "bottleneck" layers
    if resnet_size < 50:
Karmel Allison's avatar
Karmel Allison committed
139
      block_fn = resnet.building_block
140
141
      final_size = 512
    else:
Karmel Allison's avatar
Karmel Allison committed
142
      block_fn = resnet.bottleneck_block
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
      final_size = 2048

    super(ImagenetModel, self).__init__(
        resnet_size=resnet_size,
        num_classes=_NUM_CLASSES,
        num_filters=64,
        kernel_size=7,
        conv_stride=2,
        first_pool_size=3,
        first_pool_stride=2,
        second_pool_size=7,
        second_pool_stride=1,
        block_fn=block_fn,
        block_sizes=_get_block_sizes(resnet_size),
        block_strides=[1, 2, 2, 2],
        final_size=final_size,
        data_format=data_format)


def _get_block_sizes(resnet_size):
  """The number of block layers used for the Resnet model varies according
  to the size of the model. This helper grabs the layer set we want, throwing
  an error if a non-standard size has been selected.
  """
  choices = {
      18: [2, 2, 2, 2],
      34: [3, 4, 6, 3],
      50: [3, 4, 6, 3],
      101: [3, 4, 23, 3],
      152: [3, 8, 36, 3],
      200: [3, 24, 36, 3]
174
175
  }

176
177
178
179
180
181
182
  try:
    return choices[resnet_size]
  except KeyError:
    err = ('Could not find layers for selected Resnet size.\n'
           'Size received: {}; sizes allowed: {}.'.format(
               resnet_size, choices.keys()))
    raise ValueError(err)
183
184


185
186
def imagenet_model_fn(features, labels, mode, params):
  """Our model_fn for ResNet to be used with our Estimator."""
Karmel Allison's avatar
Karmel Allison committed
187
  learning_rate_fn = resnet.learning_rate_with_decay(
188
189
190
      batch_size=params['batch_size'], batch_denom=256,
      num_images=_NUM_IMAGES['train'], boundary_epochs=[30, 60, 80, 90],
      decay_rates=[1, 0.1, 0.01, 0.001, 1e-4])
191

Karmel Allison's avatar
Karmel Allison committed
192
193
194
195
196
197
198
  return resnet.resnet_model_fn(features, labels, mode, ImagenetModel,
                                resnet_size=params['resnet_size'],
                                weight_decay=1e-4,
                                learning_rate_fn=learning_rate_fn,
                                momentum=0.9,
                                data_format=params['data_format'],
                                loss_filter_fn=None)
199
200
201


def main(unused_argv):
Karmel Allison's avatar
Karmel Allison committed
202
  resnet.resnet_main(FLAGS, imagenet_model_fn, input_fn)
203
204
205
206


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
207

Karmel Allison's avatar
Karmel Allison committed
208
  parser = resnet.ResnetArgParser(
209
      resnet_size_choices=[18, 34, 50, 101, 152, 200])
210
211
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(argv=[sys.argv[0]] + unparsed)