keras_cifar_benchmark.py 7.89 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Toby Boyd's avatar
Toby Boyd committed
15
"""Executes Keras benchmarks and accuracy tests."""
Shining Sun's avatar
Shining Sun committed
16
17
18

from __future__ import absolute_import
from __future__ import division
Toby Boyd's avatar
Toby Boyd committed
19
20
from __future__ import print_function

21
import os
22
import time
Toby Boyd's avatar
Toby Boyd committed
23
from absl import flags
24
import tensorflow as tf # pylint: disable=g-bad-import-order
Toby Boyd's avatar
Toby Boyd committed
25
26

from official.resnet import cifar10_main as cifar_main
Toby Boyd's avatar
Toby Boyd committed
27
from official.resnet.keras import keras_benchmark
28
29
30
from official.resnet.keras import keras_cifar_main
from official.resnet.keras import keras_common

31
32
MIN_TOP_1_ACCURACY = 0.925
MAX_TOP_1_ACCURACY = 0.938
Toby Boyd's avatar
Toby Boyd committed
33

Toby Boyd's avatar
Toby Boyd committed
34
FLAGS = flags.FLAGS
35
CIFAR_DATA_DIR_NAME = 'cifar-10-batches-bin'
Toby Boyd's avatar
Toby Boyd committed
36

37

Toby Boyd's avatar
Toby Boyd committed
38
39
class Resnet56KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Accuracy tests for ResNet56 Keras CIFAR-10."""
40

41
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
42
43
44
45
46
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
47
48
49
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
50
51
    """

52
    self.data_dir = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
53
54
55
    flag_methods = [
        keras_common.define_keras_flags, cifar_main.define_cifar_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
56

57
58
    super(Resnet56KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
Toby Boyd's avatar
Toby Boyd committed
59

Toby Boyd's avatar
Toby Boyd committed
60
  def benchmark_graph_1_gpu(self):
61
    """Test keras based model with Keras fit and distribution strategies."""
Toby Boyd's avatar
Toby Boyd committed
62
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
63
    FLAGS.num_gpus = 1
64
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
65
66
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
67
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
68
    FLAGS.dtype = 'fp32'
69
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
70
71

  def benchmark_1_gpu(self):
72
73
    """Test keras based model with eager and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
74
    FLAGS.num_gpus = 1
75
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
76
77
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
78
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
79
80
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
81
    self._run_and_report_benchmark()
82

Toby Boyd's avatar
Toby Boyd committed
83
  def benchmark_2_gpu(self):
84
85
    """Test keras based model with eager and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
86
    FLAGS.num_gpus = 2
87
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
88
89
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
90
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
91
92
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
93
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
94
95

  def benchmark_graph_2_gpu(self):
96
97
    """Test keras based model with Keras fit and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
98
    FLAGS.num_gpus = 2
99
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
100
101
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
102
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
103
    FLAGS.dtype = 'fp32'
104
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
105
106

  def benchmark_graph_1_gpu_no_dist_strat(self):
107
    """Test keras based model with Keras fit but not distribution strategies."""
Toby Boyd's avatar
Toby Boyd committed
108
    self._setup()
109
    FLAGS.distribution_strategy = 'off'
Toby Boyd's avatar
Toby Boyd committed
110
    FLAGS.num_gpus = 1
111
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
112
113
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
114
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
115
    FLAGS.dtype = 'fp32'
116
117
118
119
    self._run_and_report_benchmark()

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
120
    stats = keras_cifar_main.run(FLAGS)
121
    wall_time_sec = time.time() - start_time_sec
Toby Boyd's avatar
Toby Boyd committed
122

123
    super(Resnet56KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
124
        stats,
125
        wall_time_sec,
Toby Boyd's avatar
Toby Boyd committed
126
127
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
128
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
129
130
131
132
133
134
135
        log_steps=100)


class Resnet56KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Short performance tests for ResNet56 via Keras and CIFAR-10."""

  def __init__(self, output_dir=None, default_flags=None):
136
137
138
    flag_methods = [
        keras_common.define_keras_flags, cifar_main.define_cifar_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
139
140
141
142
143
144

    super(Resnet56KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

145
146
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
147
    stats = keras_cifar_main.run(FLAGS)
148
149
150
151
152
153
154
    wall_time_sec = time.time() - start_time_sec

    super(Resnet56KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
Toby Boyd's avatar
Toby Boyd committed
155
156
157
158
159

  def benchmark_1_gpu_no_dist_strat(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
160
    FLAGS.distribution_strategy = 'off'
161
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
162
    FLAGS.batch_size = 128
163
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
164
165
166
167
168

  def benchmark_graph_1_gpu_no_dist_strat(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
169
    FLAGS.distribution_strategy = 'off'
170
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
171
    FLAGS.batch_size = 128
172
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
173
174
175
176
177

  def benchmark_1_gpu(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
178
    FLAGS.distribution_strategy = 'default'
179
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
180
    FLAGS.batch_size = 128
181
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
182
183
184
185
186

  def benchmark_graph_1_gpu(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
187
    FLAGS.distribution_strategy = 'default'
188
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
189
    FLAGS.batch_size = 128
190
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
191
192
193
194
195

  def benchmark_2_gpu(self):
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.enable_eager = True
196
    FLAGS.distribution_strategy = 'default'
197
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
198
    FLAGS.batch_size = 128 * 2  # 2 GPUs
199
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
200
201
202
203
204

  def benchmark_graph_2_gpu(self):
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.enable_eager = False
205
    FLAGS.distribution_strategy = 'default'
206
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
207
    FLAGS.batch_size = 128 * 2  # 2 GPUs
208
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
209
210
211
212
213


class Resnet56KerasBenchmarkSynth(Resnet56KerasBenchmarkBase):
  """Synthetic benchmarks for ResNet56 and Keras."""

214
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
215
216
217
218
219
    default_flags = {}
    default_flags['skip_eval'] = True
    default_flags['use_synthetic_data'] = True
    default_flags['train_steps'] = 110
    default_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
220

221
    super(Resnet56KerasBenchmarkSynth, self).__init__(
222
        output_dir=output_dir, default_flags=default_flags)
Toby Boyd's avatar
Toby Boyd committed
223
224
225
226
227


class Resnet56KerasBenchmarkReal(Resnet56KerasBenchmarkBase):
  """Real data benchmarks for ResNet56 and Keras."""

228
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
229
230
231
232
233
    default_flags = {}
    default_flags['skip_eval'] = True
    default_flags['data_dir'] = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
    default_flags['train_steps'] = 110
    default_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
234

235
    super(Resnet56KerasBenchmarkReal, self).__init__(
236
        output_dir=output_dir, default_flags=default_flags)
237
238
239
240


if __name__ == '__main__':
  tf.test.main()