main.py 8.78 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

15
16
17
18
"""Main function to train various object detection models."""

import functools
import pprint
19
20
21
22

from absl import app
from absl import flags
from absl import logging
23
import tensorflow as tf
24

25
from official.common import distribute_utils
26
from official.modeling.hyperparams import params_dict
Allen Wang's avatar
Allen Wang committed
27
from official.utils import hyperparams_flags
28
29
from official.utils.flags import core as flags_core
from official.utils.misc import keras_utils
30
31
32
from official.vision.detection.configs import factory as config_factory
from official.vision.detection.dataloader import input_reader
from official.vision.detection.dataloader import mode_keys as ModeKeys
Hongkun Yu's avatar
Hongkun Yu committed
33
from official.vision.detection.executor import distributed_executor as executor
34
35
36
from official.vision.detection.executor.detection_executor import DetectionDistributedExecutor
from official.vision.detection.modeling import factory as model_factory

Allen Wang's avatar
Allen Wang committed
37
hyperparams_flags.initialize_common_flags()
Will Cromar's avatar
Will Cromar committed
38
flags_core.define_log_steps()
39

Yeqing Li's avatar
Yeqing Li committed
40
flags.DEFINE_bool('enable_xla', default=False, help='Enable XLA for GPU')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
41

42
flags.DEFINE_string(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
44
45
    'mode',
    default='train',
    help='Mode to run: `train`, `eval` or `eval_once`.')
46
47
48

flags.DEFINE_string(
    'model', default='retinanet',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
49
    help='Model to run: `retinanet`, `mask_rcnn` or `shapemask`.')
50
51
52
53
54
55

flags.DEFINE_string('training_file_pattern', None,
                    'Location of the train data.')

flags.DEFINE_string('eval_file_pattern', None, 'Location of ther eval data')

Yeqing Li's avatar
Yeqing Li committed
56
57
58
flags.DEFINE_string(
    'checkpoint_path', None,
    'The checkpoint path to eval. Only used in eval_once mode.')
59
60
61
62

FLAGS = flags.FLAGS


63
def run_executor(params,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
64
65
                 mode,
                 checkpoint_path=None,
66
67
                 train_input_fn=None,
                 eval_input_fn=None,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
68
                 callbacks=None,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
69
                 prebuilt_strategy=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
  """Runs the object detection model on distribution strategy defined by the user."""
71

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
  if params.architecture.use_bfloat16:
73
    tf.compat.v2.keras.mixed_precision.set_global_policy('mixed_bfloat16')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
74

75
76
  model_builder = model_factory.model_generator(params)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
77
78
79
  if prebuilt_strategy is not None:
    strategy = prebuilt_strategy
  else:
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
80
    strategy_config = params.strategy_config
81
82
83
    distribute_utils.configure_cluster(strategy_config.worker_hosts,
                                       strategy_config.task_index)
    strategy = distribute_utils.get_distribution_strategy(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
84
85
86
87
88
89
90
91
92
        distribution_strategy=params.strategy_type,
        num_gpus=strategy_config.num_gpus,
        all_reduce_alg=strategy_config.all_reduce_alg,
        num_packs=strategy_config.num_packs,
        tpu_address=strategy_config.tpu)

  num_workers = int(strategy.num_replicas_in_sync + 7) // 8
  is_multi_host = (int(num_workers) >= 2)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
93
  if mode == 'train':
94
95
96
97

    def _model_fn(params):
      return model_builder.build_model(params, mode=ModeKeys.TRAIN)

Yeqing Li's avatar
Yeqing Li committed
98
99
    logging.info(
        'Train num_replicas_in_sync %d num_workers %d is_multi_host %s',
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
100
        strategy.num_replicas_in_sync, num_workers, is_multi_host)
101

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
102
103
    dist_executor = DetectionDistributedExecutor(
        strategy=strategy,
104
105
106
        params=params,
        model_fn=_model_fn,
        loss_fn=model_builder.build_loss_fn,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
107
        is_multi_host=is_multi_host,
108
109
110
111
        predict_post_process_fn=model_builder.post_processing,
        trainable_variables_filter=model_builder
        .make_filter_trainable_variables_fn())

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
112
113
114
115
116
    if is_multi_host:
      train_input_fn = functools.partial(
          train_input_fn,
          batch_size=params.train.batch_size // strategy.num_replicas_in_sync)

117
118
119
120
121
122
    return dist_executor.train(
        train_input_fn=train_input_fn,
        model_dir=params.model_dir,
        iterations_per_loop=params.train.iterations_per_loop,
        total_steps=params.train.total_steps,
        init_checkpoint=model_builder.make_restore_checkpoint_fn(),
123
        custom_callbacks=callbacks,
124
        save_config=True)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
125
  elif mode == 'eval' or mode == 'eval_once':
126
127
128
129

    def _model_fn(params):
      return model_builder.build_model(params, mode=ModeKeys.PREDICT_WITH_GT)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
130
131
132
    logging.info('Eval num_replicas_in_sync %d num_workers %d is_multi_host %s',
                 strategy.num_replicas_in_sync, num_workers, is_multi_host)

Yeqing Li's avatar
Yeqing Li committed
133
134
135
    if is_multi_host:
      eval_input_fn = functools.partial(
          eval_input_fn,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
136
137
138
139
          batch_size=params.eval.batch_size // strategy.num_replicas_in_sync)

    dist_executor = DetectionDistributedExecutor(
        strategy=strategy,
140
141
142
        params=params,
        model_fn=_model_fn,
        loss_fn=model_builder.build_loss_fn,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
143
        is_multi_host=is_multi_host,
144
145
146
147
        predict_post_process_fn=model_builder.post_processing,
        trainable_variables_filter=model_builder
        .make_filter_trainable_variables_fn())

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
148
    if mode == 'eval':
Yeqing Li's avatar
Yeqing Li committed
149
150
151
152
153
154
155
156
157
      results = dist_executor.evaluate_from_model_dir(
          model_dir=params.model_dir,
          eval_input_fn=eval_input_fn,
          eval_metric_fn=model_builder.eval_metrics,
          eval_timeout=params.eval.eval_timeout,
          min_eval_interval=params.eval.min_eval_interval,
          total_steps=params.train.total_steps)
    else:
      # Run evaluation once for a single checkpoint.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
158
159
      if not checkpoint_path:
        raise ValueError('checkpoint_path cannot be empty.')
Yeqing Li's avatar
Yeqing Li committed
160
161
162
163
164
165
166
167
      if tf.io.gfile.isdir(checkpoint_path):
        checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)
      summary_writer = executor.SummaryWriter(params.model_dir, 'eval')
      results, _ = dist_executor.evaluate_checkpoint(
          checkpoint_path=checkpoint_path,
          eval_input_fn=eval_input_fn,
          eval_metric_fn=model_builder.eval_metrics,
          summary_writer=summary_writer)
168
169
170
171
    for k, v in results.items():
      logging.info('Final eval metric %s: %f', k, v)
    return results
  else:
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
172
    raise ValueError('Mode not found: %s.' % mode)
173
174


175
def run(callbacks=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
176
177
  keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

178
179
180
181
182
183
184
185
186
187
188
189
190
191
  params = config_factory.config_generator(FLAGS.model)

  params = params_dict.override_params_dict(
      params, FLAGS.config_file, is_strict=True)

  params = params_dict.override_params_dict(
      params, FLAGS.params_override, is_strict=True)
  params.override(
      {
          'strategy_type': FLAGS.strategy_type,
          'model_dir': FLAGS.model_dir,
          'strategy_config': executor.strategy_flags_dict(),
      },
      is_strict=False)
192
193
194
195
196
197
198
199
200
201
202
203
204
205

  # Make sure use_tpu and strategy_type are in sync.
  params.use_tpu = (params.strategy_type == 'tpu')

  if not params.use_tpu:
    params.override({
        'architecture': {
            'use_bfloat16': False,
        },
        'norm_activation': {
            'use_sync_bn': False,
        },
    }, is_strict=True)

206
207
208
209
  params.validate()
  params.lock()
  pp = pprint.PrettyPrinter()
  params_str = pp.pformat(params.as_dict())
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
  logging.info('Model Parameters: %s', params_str)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

  train_input_fn = None
  eval_input_fn = None
  training_file_pattern = FLAGS.training_file_pattern or params.train.train_file_pattern
  eval_file_pattern = FLAGS.eval_file_pattern or params.eval.eval_file_pattern
  if not training_file_pattern and not eval_file_pattern:
    raise ValueError('Must provide at least one of training_file_pattern and '
                     'eval_file_pattern.')

  if training_file_pattern:
    # Use global batch size for single host.
    train_input_fn = input_reader.InputFn(
        file_pattern=training_file_pattern,
        params=params,
        mode=input_reader.ModeKeys.TRAIN,
        batch_size=params.train.batch_size)

  if eval_file_pattern:
    eval_input_fn = input_reader.InputFn(
        file_pattern=eval_file_pattern,
        params=params,
        mode=input_reader.ModeKeys.PREDICT_WITH_GT,
        batch_size=params.eval.batch_size,
        num_examples=params.eval.eval_samples)
Will Cromar's avatar
Will Cromar committed
235
236
237
238
239
240
241
242
243
244
245

  if callbacks is None:
    callbacks = []

  if FLAGS.log_steps:
    callbacks.append(
        keras_utils.TimeHistory(
            batch_size=params.train.batch_size,
            log_steps=FLAGS.log_steps,
        ))

246
  return run_executor(
247
      params,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
248
249
      FLAGS.mode,
      checkpoint_path=FLAGS.checkpoint_path,
250
251
252
253
254
255
256
257
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      callbacks=callbacks)


def main(argv):
  del argv  # Unused.

Yeqing Li's avatar
Yeqing Li committed
258
  run()
259
260
261


if __name__ == '__main__':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
262
  tf.config.set_soft_device_placement(True)
263
  app.run(main)