main.py 8.41 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Main function to train various object detection models."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

from absl import app
from absl import flags
from absl import logging
import functools
import os
import pprint
import tensorflow.compat.v2 as tf

from official.modeling.hyperparams import params_dict
from official.modeling.training import distributed_executor as executor
Allen Wang's avatar
Allen Wang committed
32
from official.utils import hyperparams_flags
33
34
35
36
37
from official.vision.detection.configs import factory as config_factory
from official.vision.detection.dataloader import input_reader
from official.vision.detection.dataloader import mode_keys as ModeKeys
from official.vision.detection.executor.detection_executor import DetectionDistributedExecutor
from official.vision.detection.modeling import factory as model_factory
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
38
from official.utils.misc import distribution_utils
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
39
from official.utils.misc import keras_utils
40

Allen Wang's avatar
Allen Wang committed
41
hyperparams_flags.initialize_common_flags()
42

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
43
44
45
46
47
flags.DEFINE_bool(
    'enable_xla',
    default=False,
    help='Enable XLA for GPU')

48
49
50
51
52
53
54
55
56
57
58
59
60
61
flags.DEFINE_string(
    'mode',
    default='train',
    help='Mode to run: `train`, `eval` or `train_and_eval`.')

flags.DEFINE_string(
    'model', default='retinanet',
    help='Model to run: `retinanet` or `shapemask`.')

flags.DEFINE_string('training_file_pattern', None,
                    'Location of the train data.')

flags.DEFINE_string('eval_file_pattern', None, 'Location of ther eval data')

Yeqing Li's avatar
Yeqing Li committed
62
63
64
flags.DEFINE_string(
    'checkpoint_path', None,
    'The checkpoint path to eval. Only used in eval_once mode.')
65
66
67
68

FLAGS = flags.FLAGS


69
70
71
def run_executor(params,
                 train_input_fn=None,
                 eval_input_fn=None,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
72
73
                 callbacks=None,
                 strategy=None):
74
75
  """Runs Retinanet model on distribution strategy defined by the user."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
78
79
80
  if params.architecture.use_bfloat16:
    policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
        'mixed_bfloat16')
    tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

81
82
  model_builder = model_factory.model_generator(params)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
  if strategy is None:
    strategy_config = params.strategy_config
    distribution_utils.configure_cluster(strategy_config.worker_hosts,
                                         strategy_config.task_index)
    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=params.strategy_type,
        num_gpus=strategy_config.num_gpus,
        all_reduce_alg=strategy_config.all_reduce_alg,
        num_packs=strategy_config.num_packs,
        tpu_address=strategy_config.tpu)

  num_workers = int(strategy.num_replicas_in_sync + 7) // 8
  is_multi_host = (int(num_workers) >= 2)

97
98
99
100
101
  if FLAGS.mode == 'train':

    def _model_fn(params):
      return model_builder.build_model(params, mode=ModeKeys.TRAIN)

Yeqing Li's avatar
Yeqing Li committed
102
103
    logging.info(
        'Train num_replicas_in_sync %d num_workers %d is_multi_host %s',
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
104
        strategy.num_replicas_in_sync, num_workers, is_multi_host)
105

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
106
107
    dist_executor = DetectionDistributedExecutor(
        strategy=strategy,
108
109
110
        params=params,
        model_fn=_model_fn,
        loss_fn=model_builder.build_loss_fn,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
111
        is_multi_host=is_multi_host,
112
113
114
115
        predict_post_process_fn=model_builder.post_processing,
        trainable_variables_filter=model_builder
        .make_filter_trainable_variables_fn())

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
116
117
118
119
120
    if is_multi_host:
      train_input_fn = functools.partial(
          train_input_fn,
          batch_size=params.train.batch_size // strategy.num_replicas_in_sync)

121
122
123
124
125
126
    return dist_executor.train(
        train_input_fn=train_input_fn,
        model_dir=params.model_dir,
        iterations_per_loop=params.train.iterations_per_loop,
        total_steps=params.train.total_steps,
        init_checkpoint=model_builder.make_restore_checkpoint_fn(),
127
        custom_callbacks=callbacks,
128
        save_config=True)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
129

Yeqing Li's avatar
Yeqing Li committed
130
  elif FLAGS.mode == 'eval' or FLAGS.mode == 'eval_once':
131
132
133
134

    def _model_fn(params):
      return model_builder.build_model(params, mode=ModeKeys.PREDICT_WITH_GT)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
135
136
137
    logging.info('Eval num_replicas_in_sync %d num_workers %d is_multi_host %s',
                 strategy.num_replicas_in_sync, num_workers, is_multi_host)

Yeqing Li's avatar
Yeqing Li committed
138
139
140
    if is_multi_host:
      eval_input_fn = functools.partial(
          eval_input_fn,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
141
142
143
144
          batch_size=params.eval.batch_size // strategy.num_replicas_in_sync)

    dist_executor = DetectionDistributedExecutor(
        strategy=strategy,
145
146
147
        params=params,
        model_fn=_model_fn,
        loss_fn=model_builder.build_loss_fn,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
148
        is_multi_host=is_multi_host,
149
150
151
152
        predict_post_process_fn=model_builder.post_processing,
        trainable_variables_filter=model_builder
        .make_filter_trainable_variables_fn())

Yeqing Li's avatar
Yeqing Li committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    if FLAGS.mode == 'eval':
      results = dist_executor.evaluate_from_model_dir(
          model_dir=params.model_dir,
          eval_input_fn=eval_input_fn,
          eval_metric_fn=model_builder.eval_metrics,
          eval_timeout=params.eval.eval_timeout,
          min_eval_interval=params.eval.min_eval_interval,
          total_steps=params.train.total_steps)
    else:
      # Run evaluation once for a single checkpoint.
      if not FLAGS.checkpoint_path:
        raise ValueError('FLAGS.checkpoint_path cannot be empty.')
      checkpoint_path = FLAGS.checkpoint_path
      if tf.io.gfile.isdir(checkpoint_path):
        checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)
      summary_writer = executor.SummaryWriter(params.model_dir, 'eval')
      results, _ = dist_executor.evaluate_checkpoint(
          checkpoint_path=checkpoint_path,
          eval_input_fn=eval_input_fn,
          eval_metric_fn=model_builder.eval_metrics,
          summary_writer=summary_writer)
174
175
176
177
    for k, v in results.items():
      logging.info('Final eval metric %s: %f', k, v)
    return results
  else:
178
    raise ValueError('Mode not found: %s.' % FLAGS.mode)
179
180


181
def run(callbacks=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
182
183
  keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
  params = config_factory.config_generator(FLAGS.model)

  params = params_dict.override_params_dict(
      params, FLAGS.config_file, is_strict=True)

  params = params_dict.override_params_dict(
      params, FLAGS.params_override, is_strict=True)
  params.override(
      {
          'strategy_type': FLAGS.strategy_type,
          'model_dir': FLAGS.model_dir,
          'strategy_config': executor.strategy_flags_dict(),
      },
      is_strict=False)
  params.validate()
  params.lock()
  pp = pprint.PrettyPrinter()
  params_str = pp.pformat(params.as_dict())
  logging.info('Model Parameters: {}'.format(params_str))

  train_input_fn = None
  eval_input_fn = None
  training_file_pattern = FLAGS.training_file_pattern or params.train.train_file_pattern
  eval_file_pattern = FLAGS.eval_file_pattern or params.eval.eval_file_pattern
  if not training_file_pattern and not eval_file_pattern:
    raise ValueError('Must provide at least one of training_file_pattern and '
                     'eval_file_pattern.')

  if training_file_pattern:
    # Use global batch size for single host.
    train_input_fn = input_reader.InputFn(
        file_pattern=training_file_pattern,
        params=params,
        mode=input_reader.ModeKeys.TRAIN,
        batch_size=params.train.batch_size)

  if eval_file_pattern:
    eval_input_fn = input_reader.InputFn(
        file_pattern=eval_file_pattern,
        params=params,
        mode=input_reader.ModeKeys.PREDICT_WITH_GT,
        batch_size=params.eval.batch_size,
        num_examples=params.eval.eval_samples)
227
  return run_executor(
228
229
230
231
232
233
234
235
236
      params,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      callbacks=callbacks)


def main(argv):
  del argv  # Unused.

Yeqing Li's avatar
Yeqing Li committed
237
  run()
238
239
240
241
242


if __name__ == '__main__':
  assert tf.version.VERSION.startswith('2.')
  app.run(main)