main.py 8.77 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Main function to train various object detection models."""

from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

from absl import app
from absl import flags
from absl import logging
import functools
import os
import pprint
28
import tensorflow as tf
29
30
31

from official.modeling.hyperparams import params_dict
from official.modeling.training import distributed_executor as executor
Allen Wang's avatar
Allen Wang committed
32
from official.utils import hyperparams_flags
33
34
35
36
37
from official.vision.detection.configs import factory as config_factory
from official.vision.detection.dataloader import input_reader
from official.vision.detection.dataloader import mode_keys as ModeKeys
from official.vision.detection.executor.detection_executor import DetectionDistributedExecutor
from official.vision.detection.modeling import factory as model_factory
Will Cromar's avatar
Will Cromar committed
38
from official.utils.flags import core as flags_core
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
39
from official.utils.misc import distribution_utils
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
40
from official.utils.misc import keras_utils
41

Allen Wang's avatar
Allen Wang committed
42
hyperparams_flags.initialize_common_flags()
Will Cromar's avatar
Will Cromar committed
43
flags_core.define_log_steps()
44

Yeqing Li's avatar
Yeqing Li committed
45
flags.DEFINE_bool('enable_xla', default=False, help='Enable XLA for GPU')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
46

47
flags.DEFINE_string(
Yeqing Li's avatar
Yeqing Li committed
48
    'mode', default='train', help='Mode to run: `train` or `eval`.')
49
50
51

flags.DEFINE_string(
    'model', default='retinanet',
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
    help='Model to run: `retinanet`, `mask_rcnn` or `shapemask`.')
53
54
55
56
57
58

flags.DEFINE_string('training_file_pattern', None,
                    'Location of the train data.')

flags.DEFINE_string('eval_file_pattern', None, 'Location of ther eval data')

Yeqing Li's avatar
Yeqing Li committed
59
60
61
flags.DEFINE_string(
    'checkpoint_path', None,
    'The checkpoint path to eval. Only used in eval_once mode.')
62
63
64
65

FLAGS = flags.FLAGS


66
def run_executor(params,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
67
68
                 mode,
                 checkpoint_path=None,
69
70
                 train_input_fn=None,
                 eval_input_fn=None,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
71
                 callbacks=None,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
72
                 prebuilt_strategy=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
  """Runs the object detection model on distribution strategy defined by the user."""
74

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
75
76
77
78
79
  if params.architecture.use_bfloat16:
    policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
        'mixed_bfloat16')
    tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

80
81
  model_builder = model_factory.model_generator(params)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
82
83
84
  if prebuilt_strategy is not None:
    strategy = prebuilt_strategy
  else:
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
85
86
87
88
89
90
91
92
93
94
95
96
97
    strategy_config = params.strategy_config
    distribution_utils.configure_cluster(strategy_config.worker_hosts,
                                         strategy_config.task_index)
    strategy = distribution_utils.get_distribution_strategy(
        distribution_strategy=params.strategy_type,
        num_gpus=strategy_config.num_gpus,
        all_reduce_alg=strategy_config.all_reduce_alg,
        num_packs=strategy_config.num_packs,
        tpu_address=strategy_config.tpu)

  num_workers = int(strategy.num_replicas_in_sync + 7) // 8
  is_multi_host = (int(num_workers) >= 2)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
98
  if mode == 'train':
99
100
101
102

    def _model_fn(params):
      return model_builder.build_model(params, mode=ModeKeys.TRAIN)

Yeqing Li's avatar
Yeqing Li committed
103
104
    logging.info(
        'Train num_replicas_in_sync %d num_workers %d is_multi_host %s',
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
105
        strategy.num_replicas_in_sync, num_workers, is_multi_host)
106

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
107
108
    dist_executor = DetectionDistributedExecutor(
        strategy=strategy,
109
110
111
        params=params,
        model_fn=_model_fn,
        loss_fn=model_builder.build_loss_fn,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
112
        is_multi_host=is_multi_host,
113
114
115
116
        predict_post_process_fn=model_builder.post_processing,
        trainable_variables_filter=model_builder
        .make_filter_trainable_variables_fn())

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
117
118
119
120
121
    if is_multi_host:
      train_input_fn = functools.partial(
          train_input_fn,
          batch_size=params.train.batch_size // strategy.num_replicas_in_sync)

122
123
124
125
126
127
    return dist_executor.train(
        train_input_fn=train_input_fn,
        model_dir=params.model_dir,
        iterations_per_loop=params.train.iterations_per_loop,
        total_steps=params.train.total_steps,
        init_checkpoint=model_builder.make_restore_checkpoint_fn(),
128
        custom_callbacks=callbacks,
129
        save_config=True)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
130
  elif mode == 'eval' or mode == 'eval_once':
131
132
133
134

    def _model_fn(params):
      return model_builder.build_model(params, mode=ModeKeys.PREDICT_WITH_GT)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
135
136
137
    logging.info('Eval num_replicas_in_sync %d num_workers %d is_multi_host %s',
                 strategy.num_replicas_in_sync, num_workers, is_multi_host)

Yeqing Li's avatar
Yeqing Li committed
138
139
140
    if is_multi_host:
      eval_input_fn = functools.partial(
          eval_input_fn,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
141
142
143
144
          batch_size=params.eval.batch_size // strategy.num_replicas_in_sync)

    dist_executor = DetectionDistributedExecutor(
        strategy=strategy,
145
146
147
        params=params,
        model_fn=_model_fn,
        loss_fn=model_builder.build_loss_fn,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
148
        is_multi_host=is_multi_host,
149
150
151
152
        predict_post_process_fn=model_builder.post_processing,
        trainable_variables_filter=model_builder
        .make_filter_trainable_variables_fn())

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
153
    if mode == 'eval':
Yeqing Li's avatar
Yeqing Li committed
154
155
156
157
158
159
160
161
162
      results = dist_executor.evaluate_from_model_dir(
          model_dir=params.model_dir,
          eval_input_fn=eval_input_fn,
          eval_metric_fn=model_builder.eval_metrics,
          eval_timeout=params.eval.eval_timeout,
          min_eval_interval=params.eval.min_eval_interval,
          total_steps=params.train.total_steps)
    else:
      # Run evaluation once for a single checkpoint.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
163
164
      if not checkpoint_path:
        raise ValueError('checkpoint_path cannot be empty.')
Yeqing Li's avatar
Yeqing Li committed
165
166
167
168
169
170
171
172
      if tf.io.gfile.isdir(checkpoint_path):
        checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)
      summary_writer = executor.SummaryWriter(params.model_dir, 'eval')
      results, _ = dist_executor.evaluate_checkpoint(
          checkpoint_path=checkpoint_path,
          eval_input_fn=eval_input_fn,
          eval_metric_fn=model_builder.eval_metrics,
          summary_writer=summary_writer)
173
174
175
176
    for k, v in results.items():
      logging.info('Final eval metric %s: %f', k, v)
    return results
  else:
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
177
    raise ValueError('Mode not found: %s.' % mode)
178
179


180
def run(callbacks=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
181
182
  keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  params = config_factory.config_generator(FLAGS.model)

  params = params_dict.override_params_dict(
      params, FLAGS.config_file, is_strict=True)

  params = params_dict.override_params_dict(
      params, FLAGS.params_override, is_strict=True)
  params.override(
      {
          'strategy_type': FLAGS.strategy_type,
          'model_dir': FLAGS.model_dir,
          'strategy_config': executor.strategy_flags_dict(),
      },
      is_strict=False)
  params.validate()
  params.lock()
  pp = pprint.PrettyPrinter()
  params_str = pp.pformat(params.as_dict())
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201
  logging.info('Model Parameters: %s', params_str)
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

  train_input_fn = None
  eval_input_fn = None
  training_file_pattern = FLAGS.training_file_pattern or params.train.train_file_pattern
  eval_file_pattern = FLAGS.eval_file_pattern or params.eval.eval_file_pattern
  if not training_file_pattern and not eval_file_pattern:
    raise ValueError('Must provide at least one of training_file_pattern and '
                     'eval_file_pattern.')

  if training_file_pattern:
    # Use global batch size for single host.
    train_input_fn = input_reader.InputFn(
        file_pattern=training_file_pattern,
        params=params,
        mode=input_reader.ModeKeys.TRAIN,
        batch_size=params.train.batch_size)

  if eval_file_pattern:
    eval_input_fn = input_reader.InputFn(
        file_pattern=eval_file_pattern,
        params=params,
        mode=input_reader.ModeKeys.PREDICT_WITH_GT,
        batch_size=params.eval.batch_size,
        num_examples=params.eval.eval_samples)
Will Cromar's avatar
Will Cromar committed
226
227
228
229
230
231
232
233
234
235
236

  if callbacks is None:
    callbacks = []

  if FLAGS.log_steps:
    callbacks.append(
        keras_utils.TimeHistory(
            batch_size=params.train.batch_size,
            log_steps=FLAGS.log_steps,
        ))

237
  return run_executor(
238
      params,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
239
240
      FLAGS.mode,
      checkpoint_path=FLAGS.checkpoint_path,
241
242
243
244
245
246
247
248
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      callbacks=callbacks)


def main(argv):
  del argv  # Unused.

Yeqing Li's avatar
Yeqing Li committed
249
  run()
250
251
252


if __name__ == '__main__':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
253
  tf.config.set_soft_device_placement(True)
254
  app.run(main)