data_test.py 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test NCF data pipeline."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
from collections import defaultdict
22
import hashlib
Taylor Robie's avatar
Taylor Robie committed
23
import mock
24
25
26
import os

import numpy as np
27
import scipy.stats
28
29
30
31
32
import tensorflow as tf

from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import data_preprocessing
33
from official.recommendation import popen_helper
34
35
36
37
38
39
40


DATASET = "ml-test"
NUM_USERS = 1000
NUM_ITEMS = 2000
NUM_PTS = 50000
BATCH_SIZE = 2048
41
EVAL_BATCH_SIZE = 4000
42
43
44
NUM_NEG = 4


45
46
47
48
49
END_TO_END_TRAIN_MD5 = "b218738e915e825d03939c5e305a2698"
END_TO_END_EVAL_MD5 = "d753d0f3186831466d6e218163a9501e"
FRESH_RANDOMNESS_MD5 = "63d0dff73c0e5f1048fbdc8c65021e22"


50
51
52
def mock_download(*args, **kwargs):
  return

Taylor Robie's avatar
Taylor Robie committed
53
54
55
56
# The forkpool used by data producers interacts badly with the threading
# used by TestCase. Without this patch tests will hang, and no amount
# of diligent closing and joining within the producer will prevent it.
@mock.patch.object(popen_helper, "get_forkpool", popen_helper.get_fauxpool)
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
class BaseTest(tf.test.TestCase):
  def setUp(self):
    self.temp_data_dir = self.get_temp_dir()
    ratings_folder = os.path.join(self.temp_data_dir, DATASET)
    tf.gfile.MakeDirs(ratings_folder)
    np.random.seed(0)
    raw_user_ids = np.arange(NUM_USERS * 3)
    np.random.shuffle(raw_user_ids)
    raw_user_ids = raw_user_ids[:NUM_USERS]

    raw_item_ids = np.arange(NUM_ITEMS * 3)
    np.random.shuffle(raw_item_ids)
    raw_item_ids = raw_item_ids[:NUM_ITEMS]

    users = np.random.choice(raw_user_ids, NUM_PTS)
    items = np.random.choice(raw_item_ids, NUM_PTS)
    scores = np.random.randint(low=0, high=5, size=NUM_PTS)
    times = np.random.randint(low=1000000000, high=1200000000, size=NUM_PTS)

76
    self.rating_file = os.path.join(ratings_folder, movielens.RATINGS_FILE)
77
78
    self.seen_pairs = set()
    self.holdout = {}
79
    with tf.gfile.Open(self.rating_file, "w") as f:
80
81
82
83
84
85
86
87
88
89
90
91
92
      f.write("user_id,item_id,rating,timestamp\n")
      for usr, itm, scr, ts in zip(users, items, scores, times):
        pair = (usr, itm)
        if pair in self.seen_pairs:
          continue
        self.seen_pairs.add(pair)
        if usr not in self.holdout or (ts, itm) > self.holdout[usr]:
          self.holdout[usr] = (ts, itm)

        f.write("{},{},{},{}\n".format(usr, itm, scr, ts))

    movielens.download = mock_download
    movielens.NUM_RATINGS[DATASET] = NUM_PTS
93
94
    data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[DATASET] = (NUM_USERS,
                                                                  NUM_ITEMS)
95

96
97
98
99
100
101
102
103
104
105
106
107
108
  def make_params(self, train_epochs=1):
    return {
        "train_epochs": train_epochs,
        "batches_per_step": 1,
        "use_seed": False,
        "batch_size": BATCH_SIZE,
        "eval_batch_size": EVAL_BATCH_SIZE,
        "num_neg": NUM_NEG,
        "match_mlperf": True,
        "use_tpu": False,
        "use_xla_for_gpu": False,
    }

109
110
  def test_preprocessing(self):
    # For the most part the necessary checks are performed within
111
112
113
114
115
116
117
118
119
120
121
    # _filter_index_sort()

    for match_mlperf in [True, False]:
      cache_path = os.path.join(self.temp_data_dir, "test_cache.pickle")
      data, valid_cache = data_preprocessing._filter_index_sort(
          self.rating_file, cache_path=cache_path,
          match_mlperf=match_mlperf)

      assert len(data[rconst.USER_MAP]) == NUM_USERS
      assert len(data[rconst.ITEM_MAP]) == NUM_ITEMS
      assert not valid_cache
122
123
124
125
126
127
128
129
130
131
132
133
134
135

  def drain_dataset(self, dataset, g):
    # type: (tf.data.Dataset, tf.Graph) -> list
    with self.test_session(graph=g) as sess:
      with g.as_default():
        batch = dataset.make_one_shot_iterator().get_next()
      output = []
      while True:
        try:
          output.append(sess.run(batch))
        except tf.errors.OutOfRangeError:
          break
    return output

136
  def _test_end_to_end(self, constructor_type):
137
138
    params = self.make_params(train_epochs=1)
    _, _, producer = data_preprocessing.instantiate_pipeline(
139
140
        dataset=DATASET, data_dir=self.temp_data_dir, params=params,
        constructor_type=constructor_type, deterministic=True)
141
142
143
144

    producer.start()
    producer.join()
    assert producer._fatal_exception is None
145

146
147
148
149
150
151
    user_inv_map = {v: k for k, v in producer.user_map.items()}
    item_inv_map = {v: k for k, v in producer.item_map.items()}

    # ==========================================================================
    # == Training Data =========================================================
    # ==========================================================================
152
153
    g = tf.Graph()
    with g.as_default():
154
155
156
      input_fn = producer.make_input_fn(is_training=True)
      dataset = input_fn(params)

157
158
    first_epoch = self.drain_dataset(dataset=dataset, g=g)

159
    counts = defaultdict(int)
160
161
162
163
    train_examples = {
        True: set(),
        False: set(),
    }
164

165
    md5 = hashlib.md5()
166
    for features, labels in first_epoch:
167
      data_list = [
168
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
169
          features[rconst.VALID_POINT_MASK], labels]
Taylor Robie's avatar
Taylor Robie committed
170
171
172
      for i in data_list:
        md5.update(i.tobytes())

173
      for u, i, v, l in zip(*data_list):
174
175
        if not v:
          continue  # ignore padding
176

177
178
179
180
181
182
183
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if ((u_raw, i_raw) in self.seen_pairs) != l:
          # The evaluation item is not considered during false negative
          # generation, so it will occasionally appear as a negative example
          # during training.
          assert not l
184
          self.assertEqual(i_raw, self.holdout[u_raw][1])
185
        train_examples[l].add((u_raw, i_raw))
186
187
        counts[(u_raw, i_raw)] += 1

188
    self.assertRegexpMatches(md5.hexdigest(), END_TO_END_TRAIN_MD5)
189

190
    num_positives_seen = len(train_examples[True])
191
    self.assertEqual(producer._train_pos_users.shape[0], num_positives_seen)
192
193
194

    # This check is more heuristic because negatives are sampled with
    # replacement. It only checks that negative generation is reasonably random.
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    self.assertGreater(
        len(train_examples[False]) / NUM_NEG / num_positives_seen, 0.9)

    # This checks that the samples produced are independent by checking the
    # number of duplicate entries. If workers are not properly independent there
    # will be lots of repeated pairs.
    self.assertLess(np.mean(list(counts.values())), 1.1)

    # ==========================================================================
    # == Eval Data =============================================================
    # ==========================================================================
    with g.as_default():
      input_fn = producer.make_input_fn(is_training=False)
      dataset = input_fn(params)
209

210
    eval_data = self.drain_dataset(dataset=dataset, g=g)
211

212
    current_user = None
213
    md5 = hashlib.md5()
214
    for features in eval_data:
215
216
217
      data_list = [
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
          features[rconst.DUPLICATE_MASK]]
Taylor Robie's avatar
Taylor Robie committed
218
219
220
      for i in data_list:
        md5.update(i.tobytes())

221
      for idx, (u, i, d) in enumerate(zip(*data_list)):
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        u_raw = user_inv_map[u]
        i_raw = item_inv_map[i]
        if current_user is None:
          current_user = u

        # Ensure that users appear in blocks, as the evaluation logic expects
        # this structure.
        self.assertEqual(u, current_user)

        # The structure of evaluation data is 999 negative examples followed
        # by the holdout positive.
        if not (idx + 1) % (rconst.NUM_EVAL_NEGATIVES + 1):
          # Check that the last element in each chunk is the holdout item.
          self.assertEqual(i_raw, self.holdout[u_raw][1])
          current_user = None

        elif i_raw == self.holdout[u_raw][1]:
          # Because the holdout item is not given to the negative generation
          # process, it can appear as a negative. In that case, it should be
          # masked out as a duplicate. (Since the true positive is placed at
          # the end and would therefore lose the tie.)
          assert d

        else:
          # Otherwise check that the other 999 points for a user are selected
          # from the negatives.
          assert (u_raw, i_raw) not in self.seen_pairs

250
251
252
    self.assertRegexpMatches(md5.hexdigest(), END_TO_END_EVAL_MD5)

  def _test_fresh_randomness(self, constructor_type):
253
254
255
    train_epochs = 5
    params = self.make_params(train_epochs=train_epochs)
    _, _, producer = data_preprocessing.instantiate_pipeline(
256
257
        dataset=DATASET, data_dir=self.temp_data_dir, params=params,
        constructor_type=constructor_type, deterministic=True)
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

    producer.start()

    results = []
    g = tf.Graph()
    with g.as_default():
      for _ in range(train_epochs):
        input_fn = producer.make_input_fn(is_training=True)
        dataset = input_fn(params)
        results.extend(self.drain_dataset(dataset=dataset, g=g))

    producer.join()
    assert producer._fatal_exception is None

    positive_counts, negative_counts = defaultdict(int), defaultdict(int)
273
    md5 = hashlib.md5()
274
    for features, labels in results:
275
      data_list = [
276
          features[movielens.USER_COLUMN], features[movielens.ITEM_COLUMN],
277
          features[rconst.VALID_POINT_MASK], labels]
Taylor Robie's avatar
Taylor Robie committed
278
279
280
      for i in data_list:
        md5.update(i.tobytes())

281
      for u, i, v, l in zip(*data_list):
282
283
284
285
286
287
288
289
        if not v:
          continue  # ignore padding

        if l:
          positive_counts[(u, i)] += 1
        else:
          negative_counts[(u, i)] += 1

290
291
    self.assertRegexpMatches(md5.hexdigest(), FRESH_RANDOMNESS_MD5)

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    # The positive examples should appear exactly once each epoch
    self.assertAllEqual(list(positive_counts.values()),
                        [train_epochs for _ in positive_counts])

    # The threshold for the negatives is heuristic, but in general repeats are
    # expected, but should not appear too frequently.

    pair_cardinality = NUM_USERS * NUM_ITEMS
    neg_pair_cardinality = pair_cardinality - len(self.seen_pairs)

    # Approximation for the expectation number of times that a particular
    # negative will appear in a given epoch. Implicit in this calculation is the
    # treatment of all negative pairs as equally likely. Normally is not
    # necessarily reasonable; however the generation in self.setUp() will
    # approximate this behavior sufficiently for heuristic testing.
    e_sample = len(self.seen_pairs) * NUM_NEG / neg_pair_cardinality

    # The frequency of occurance of a given negative pair should follow an
    # approximately binomial distribution in the limit that the cardinality of
    # the negative pair set >> number of samples per epoch.
    approx_pdf = scipy.stats.binom.pmf(k=np.arange(train_epochs+1),
                                       n=train_epochs, p=e_sample)

    # Tally the actual observed counts.
    count_distribution = [0 for _ in range(train_epochs + 1)]
    for i in negative_counts.values():
      i = min([i, train_epochs])  # round down tail for simplicity.
      count_distribution[i] += 1
    count_distribution[0] = neg_pair_cardinality - sum(count_distribution[1:])

    # Check that the frequency of negative pairs is approximately binomial.
    for i in range(train_epochs + 1):
      if approx_pdf[i] < 0.05:
        continue  # Variance will be high at the tails.

      observed_fraction = count_distribution[i] / neg_pair_cardinality
      deviation = (2 * abs(observed_fraction - approx_pdf[i]) /
                   (observed_fraction + approx_pdf[i]))

      self.assertLess(deviation, 0.2)
332

333
334
335
336
337
338
339
340
341
342
343
344
  def test_end_to_end_materialized(self):
    self._test_end_to_end("materialized")

  def test_end_to_end_bisection(self):
    self._test_end_to_end("bisection")

  def test_fresh_randomness_materialized(self):
    self._test_fresh_randomness("materialized")

  def test_fresh_randomness_bisection(self):
    self._test_fresh_randomness("bisection")

345
346
347
348

if __name__ == "__main__":
  tf.logging.set_verbosity(tf.logging.INFO)
  tf.test.main()