classifier_data_lib.py 52.8 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
17
18
"""BERT library to process data for classification task."""

import collections
import csv
19
import importlib
stephenwu's avatar
stephenwu committed
20
import json
21
22
23
24
import os

from absl import logging
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
import tensorflow_datasets as tfds
26

27
from official.nlp.bert import tokenization
28
29
30


class InputExample(object):
31
  """A single training/test example for simple seq regression/classification."""
32

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
34
35
36
37
38
  def __init__(self,
               guid,
               text_a,
               text_b=None,
               label=None,
               weight=None,
Chen Chen's avatar
Chen Chen committed
39
               example_id=None):
40
41
42
43
44
45
46
47
    """Constructs a InputExample.

    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
48
49
50
      label: (Optional) string for classification, float for regression. The
        label of the example. This should be specified for train and dev
        examples, but not for test examples.
Maxim Neumann's avatar
Maxim Neumann committed
51
52
      weight: (Optional) float. The weight of the example to be used during
        training.
Chen Chen's avatar
Chen Chen committed
53
54
      example_id: (Optional) int. The int identification number of example in
        the corpus.
55
56
57
58
59
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label
Maxim Neumann's avatar
Maxim Neumann committed
60
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
61
    self.example_id = example_id
62
63
64
65
66
67
68
69
70
71


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               input_ids,
               input_mask,
               segment_ids,
               label_id,
Maxim Neumann's avatar
Maxim Neumann committed
72
               is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
               weight=None,
Chen Chen's avatar
Chen Chen committed
74
               example_id=None):
75
76
77
78
79
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.label_id = label_id
    self.is_real_example = is_real_example
Maxim Neumann's avatar
Maxim Neumann committed
80
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
81
    self.example_id = example_id
82
83
84


class DataProcessor(object):
85
  """Base class for converters for seq regression/classification datasets."""
86

87
88
  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    self.process_text_fn = process_text_fn
89
90
    self.is_regression = False
    self.label_type = None
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

  def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

  def get_test_examples(self, data_dir):
    """Gets a collection of `InputExample`s for prediction."""
    raise NotImplementedError()

  def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

  @staticmethod
  def get_processor_name():
    """Gets the string identifier of the processor."""
    raise NotImplementedError()

  @classmethod
  def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    with tf.io.gfile.GFile(input_file, "r") as f:
      reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
      lines = []
      for line in reader:
        lines.append(line)
      return lines

stephenwu's avatar
stephenwu committed
123
  @classmethod
stephenwu's avatar
stephenwu committed
124
  def _read_jsonl(cls, input_file):
stephenwu's avatar
stephenwu committed
125
    """Reads a json line file."""
126
    with tf.io.gfile.GFile(input_file, "r") as f:
stephenwu's avatar
stephenwu committed
127
128
129
130
131
      lines = []
      for json_str in f:
        lines.append(json.loads(json_str))
    return lines

132

Vincent Etter's avatar
Vincent Etter committed
133
134
135
136
137
class AxProcessor(DataProcessor):
  """Processor for the AX dataset (GLUE diagnostics dataset)."""

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
138
139
140
    train_mnli_dataset = tfds.load(
        "glue/mnli", split="train", try_gcs=True).as_numpy_iterator()
    return self._create_examples_tfds(train_mnli_dataset, "train")
Vincent Etter's avatar
Vincent Etter committed
141
142
143

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
144
145
146
147
    val_mnli_dataset = tfds.load(
        "glue/mnli", split="validation_matched",
        try_gcs=True).as_numpy_iterator()
    return self._create_examples_tfds(val_mnli_dataset, "validation")
Vincent Etter's avatar
Vincent Etter committed
148
149
150

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
151
152
153
    test_ax_dataset = tfds.load(
        "glue/ax", split="test", try_gcs=True).as_numpy_iterator()
    return self._create_examples_tfds(test_ax_dataset, "test")
Vincent Etter's avatar
Vincent Etter committed
154
155
156
157
158
159
160
161
162
163

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "AX"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
164
  def _create_examples_tfds(self, dataset, set_type):
Vincent Etter's avatar
Vincent Etter committed
165
166
    """Creates examples for the training/dev/test sets."""
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
167
168
169
170
171
172
173
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      label = "contradiction"
      text_a = self.process_text_fn(example["hypothesis"])
      text_b = self.process_text_fn(example["premise"])
      if set_type != "test":
        label = self.get_labels()[example["label"]]
Vincent Etter's avatar
Vincent Etter committed
174
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
175
176
177
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
Vincent Etter's avatar
Vincent Etter committed
178
179
180
    return examples


181
182
class ColaProcessor(DataProcessor):
  """Processor for the CoLA data set (GLUE version)."""
183
184
185

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
186
    return self._create_examples_tfds("train")
187
188
189

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
190
    return self._create_examples_tfds("validation")
191
192
193

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
194
    return self._create_examples_tfds("test")
195
196
197
198
199
200
201
202
203
204

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "COLA"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
205
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
206
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
207
208
    dataset = tfds.load(
        "glue/cola", split=set_type, try_gcs=True).as_numpy_iterator()
209
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
    for i, example in enumerate(dataset):
211
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
212
213
214
215
      label = "0"
      text_a = self.process_text_fn(example["sentence"])
      if set_type != "test":
        label = str(example["label"])
216
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
217
218
          InputExample(
              guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
219
220
    return examples

221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
class ImdbProcessor(DataProcessor):
  """Processor for the IMDb dataset."""

  def get_labels(self):
    return ["neg", "pos"]

  def get_train_examples(self, data_dir):
    return self._create_examples(os.path.join(data_dir, "train"))

  def get_dev_examples(self, data_dir):
    return self._create_examples(os.path.join(data_dir, "test"))

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "IMDB"

  def _create_examples(self, data_dir):
    """Creates examples."""
    examples = []
    for label in ["neg", "pos"]:
      cur_dir = os.path.join(data_dir, label)
      for filename in tf.io.gfile.listdir(cur_dir):
        if not filename.endswith("txt"):
          continue

        if len(examples) % 1000 == 0:
          logging.info("Loading dev example %d", len(examples))

        path = os.path.join(cur_dir, filename)
        with tf.io.gfile.GFile(path, "r") as f:
          text = f.read().strip().replace("<br />", " ")
        examples.append(
            InputExample(
                guid="unused_id", text_a=text, text_b=None, label=label))
    return examples


260
261
262
class MnliProcessor(DataProcessor):
  """Processor for the MultiNLI data set (GLUE version)."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
263
264
265
266
  def __init__(self,
               mnli_type="matched",
               process_text_fn=tokenization.convert_to_unicode):
    super(MnliProcessor, self).__init__(process_text_fn)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
267
    self.dataset = tfds.load("glue/mnli", try_gcs=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
268
269
270
271
    if mnli_type not in ("matched", "mismatched"):
      raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
    self.mnli_type = mnli_type

272
273
  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
274
    return self._create_examples_tfds("train")
275
276
277

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
278
    if self.mnli_type == "matched":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
279
      return self._create_examples_tfds("validation_matched")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
280
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
281
      return self._create_examples_tfds("validation_mismatched")
282

Tianqi Liu's avatar
Tianqi Liu committed
283
284
  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
285
    if self.mnli_type == "matched":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
286
      return self._create_examples_tfds("test_matched")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
287
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
288
      return self._create_examples_tfds("test_mismatched")
Tianqi Liu's avatar
Tianqi Liu committed
289

290
291
292
293
294
295
296
  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
297
    return "MNLI"
Tianqi Liu's avatar
Tianqi Liu committed
298

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
299
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
300
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
301
302
    dataset = tfds.load(
        "glue/mnli", split=set_type, try_gcs=True).as_numpy_iterator()
Tianqi Liu's avatar
Tianqi Liu committed
303
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
304
305
306
307
308
309
310
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      label = "contradiction"
      text_a = self.process_text_fn(example["hypothesis"])
      text_b = self.process_text_fn(example["premise"])
      if set_type != "test":
        label = self.get_labels()[example["label"]]
Tianqi Liu's avatar
Tianqi Liu committed
311
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
312
313
314
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
Tianqi Liu's avatar
Tianqi Liu committed
315
316
    return examples

317
318
319
320
321
322

class MrpcProcessor(DataProcessor):
  """Processor for the MRPC data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
323
    return self._create_examples_tfds("train")
324

Tianqi Liu's avatar
Tianqi Liu committed
325
326
  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
327
    return self._create_examples_tfds("validation")
Tianqi Liu's avatar
Tianqi Liu committed
328
329
330

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
331
    return self._create_examples_tfds("test")
Tianqi Liu's avatar
Tianqi Liu committed
332
333
334

  def get_labels(self):
    """See base class."""
335
    return ["0", "1"]
Tianqi Liu's avatar
Tianqi Liu committed
336
337
338
339

  @staticmethod
  def get_processor_name():
    """See base class."""
340
341
    return "MRPC"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
342
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
343
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
344
345
    dataset = tfds.load(
        "glue/mrpc", split=set_type, try_gcs=True).as_numpy_iterator()
346
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
347
    for i, example in enumerate(dataset):
348
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
349
350
351
352
353
      label = "0"
      text_a = self.process_text_fn(example["sentence1"])
      text_b = self.process_text_fn(example["sentence2"])
      if set_type != "test":
        label = str(example["label"])
354
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
355
356
357
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
358
    return examples
Tianqi Liu's avatar
Tianqi Liu committed
359
360
361
362
363
364


class PawsxProcessor(DataProcessor):
  """Processor for the PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

Tianqi Liu's avatar
Tianqi Liu committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(PawsxProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = PawsxProcessor.supported_languages
    elif language not in PawsxProcessor.supported_languages:
      raise ValueError("language %s is not supported for PAWS-X task." %
                       language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      if language == "en":
        train_tsv = "train.tsv"
      else:
        train_tsv = "translated_train.tsv"
      # Skips the header.
      lines.extend(
Tianqi Liu's avatar
Tianqi Liu committed
387
          self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
388
389

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
390
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
391
392
393
394
395
396
397
398
399
400
401
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = []
Tianqi Liu's avatar
Tianqi Liu committed
402
    for lang in PawsxProcessor.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
403
404
      lines.extend(
          self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
405
406

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
407
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
408
      guid = "dev-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
409
410
411
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
412
413
414
415
416
417
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
418
419
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
420
      lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
421
      for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
422
        guid = "test-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
423
424
425
        text_a = self.process_text_fn(line[1])
        text_b = self.process_text_fn(line[2])
        label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
426
        examples_by_lang[lang].append(
Tianqi Liu's avatar
Tianqi Liu committed
427
428
429
430
431
432
433
434
435
436
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
437
438
439
    return "XTREME-PAWS-X"


440
441
class QnliProcessor(DataProcessor):
  """Processor for the QNLI data set (GLUE version)."""
Saurabh Saxena's avatar
Saurabh Saxena committed
442
443
444

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
445
    return self._create_examples_tfds("train")
Saurabh Saxena's avatar
Saurabh Saxena committed
446
447
448

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
449
    return self._create_examples_tfds("validation")
Saurabh Saxena's avatar
Saurabh Saxena committed
450
451
452

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
453
    return self._create_examples_tfds("test")
Saurabh Saxena's avatar
Saurabh Saxena committed
454
455
456

  def get_labels(self):
    """See base class."""
457
    return ["entailment", "not_entailment"]
Saurabh Saxena's avatar
Saurabh Saxena committed
458
459
460
461

  @staticmethod
  def get_processor_name():
    """See base class."""
462
    return "QNLI"
Saurabh Saxena's avatar
Saurabh Saxena committed
463

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
464
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
465
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
466
467
    dataset = tfds.load(
        "glue/qnli", split=set_type, try_gcs=True).as_numpy_iterator()
Saurabh Saxena's avatar
Saurabh Saxena committed
468
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
469
470
471
472
473
474
475
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      label = "entailment"
      text_a = self.process_text_fn(example["question"])
      text_b = self.process_text_fn(example["sentence"])
      if set_type != "test":
        label = self.get_labels()[example["label"]]
Tianqi Liu's avatar
Tianqi Liu committed
476
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
477
478
479
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
Saurabh Saxena's avatar
Saurabh Saxena committed
480
481
482
    return examples


483
484
class QqpProcessor(DataProcessor):
  """Processor for the QQP data set (GLUE version)."""
485
486
487

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
488
    return self._create_examples_tfds("train")
489
490
491

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
492
    return self._create_examples_tfds("validation")
493
494
495

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
496
    return self._create_examples_tfds("test")
497
498
499
500
501
502
503
504

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
505
    return "QQP"
506

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
507
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
508
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
509
510
    dataset = tfds.load(
        "glue/qqp", split=set_type, try_gcs=True).as_numpy_iterator()
511
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
512
513
514
515
516
517
518
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      label = "0"
      text_a = self.process_text_fn(example["question1"])
      text_b = self.process_text_fn(example["question2"])
      if set_type != "test":
        label = str(example["label"])
519
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
520
521
522
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
523
524
525
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
526
527
528
529
530
class RteProcessor(DataProcessor):
  """Processor for the RTE data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
531
    return self._create_examples_tfds("train")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
532
533
534

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
535
    return self._create_examples_tfds("validation")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
536
537
538

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
539
    return self._create_examples_tfds("test")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
540
541
542
543
544
545
546
547
548
549
550
551

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTE"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
552
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
553
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
554
555
    dataset = tfds.load(
        "glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
556
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
557
    for i, example in enumerate(dataset):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
558
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
559
560
561
562
563
      label = "entailment"
      text_a = self.process_text_fn(example["sentence1"])
      text_b = self.process_text_fn(example["sentence2"])
      if set_type != "test":
        label = self.get_labels()[example["label"]]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
564
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
565
566
567
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
568
569
570
    return examples


571
572
573
574
575
class SstProcessor(DataProcessor):
  """Processor for the SST-2 data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
576
    return self._create_examples_tfds("train")
577
578
579

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
580
    return self._create_examples_tfds("validation")
581
582
583

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
584
    return self._create_examples_tfds("test")
585
586
587
588
589
590
591
592
593
594

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "SST-2"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
595
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
596
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
597
598
    dataset = tfds.load(
        "glue/sst2", split=set_type, try_gcs=True).as_numpy_iterator()
599
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
600
    for i, example in enumerate(dataset):
601
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
602
603
604
605
      label = "0"
      text_a = self.process_text_fn(example["sentence"])
      if set_type != "test":
        label = str(example["label"])
606
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
607
608
          InputExample(
              guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
609
610
611
    return examples


612
613
614
615
616
617
618
619
class StsBProcessor(DataProcessor):
  """Processor for the STS-B data set (GLUE version)."""

  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
    self.is_regression = True
    self.label_type = float
    self._labels = None
620
621
622

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
623
    return self._create_examples_tfds("train")
624
625
626

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
627
    return self._create_examples_tfds("validation")
628
629
630

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    return self._create_examples_tfds("test")

  def _create_examples_tfds(self, set_type):
    """Creates examples for the training/dev/test sets."""
    dataset = tfds.load(
        "glue/stsb", split=set_type, try_gcs=True).as_numpy_iterator()
    examples = []
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      label = 0.0
      text_a = self.process_text_fn(example["sentence1"])
      text_b = self.process_text_fn(example["sentence2"])
      if set_type != "test":
        label = self.label_type(example["label"])
      examples.append(
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
    return examples
650
651
652

  def get_labels(self):
    """See base class."""
653
    return self._labels
654
655
656
657

  @staticmethod
  def get_processor_name():
    """See base class."""
658
    return "STS-B"
659
660


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
661
class TfdsProcessor(DataProcessor):
Maxim Neumann's avatar
Maxim Neumann committed
662
  """Processor for generic text classification and regression TFDS data set.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
663
664
665
666
667
668
669
670
671
672

  The TFDS parameters are expected to be provided in the tfds_params string, in
  a comma-separated list of parameter assignments.
  Examples:
    tfds_params="dataset=scicite,text_key=string"
    tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
    tfds_params="dataset=glue/cola,text_key=sentence"
    tfds_params="dataset=glue/sst2,text_key=sentence"
    tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
    tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
Maxim Neumann's avatar
Maxim Neumann committed
673
674
    tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
                "is_regression=true,label_type=float"
Maxim Neumann's avatar
Maxim Neumann committed
675
676
    tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
                "skip_label=-1"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
677
678
679
680
  Possible parameters (please refer to the documentation of Tensorflow Datasets
  (TFDS) for the meaning of individual parameters):
    dataset: Required dataset name (potentially with subset and version number).
    data_dir: Optional TFDS source root directory.
681
    module_import: Optional Dataset module to import.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
682
683
684
685
686
687
688
689
690
    train_split: Name of the train split (defaults to `train`).
    dev_split: Name of the dev split (defaults to `validation`).
    test_split: Name of the test split (defaults to `test`).
    text_key: Key of the text_a feature (defaults to `text`).
    text_b_key: Key of the second text feature if available.
    label_key: Key of the label feature (defaults to `label`).
    test_text_key: Key of the text feature to use in test set.
    test_text_b_key: Key of the second text feature to use in test set.
    test_label: String to be used as the label for all test examples.
Maxim Neumann's avatar
Maxim Neumann committed
691
    label_type: Type of the label key (defaults to `int`).
Maxim Neumann's avatar
Maxim Neumann committed
692
    weight_key: Key of the float sample weight (is not used if not provided).
Maxim Neumann's avatar
Maxim Neumann committed
693
    is_regression: Whether the task is a regression problem (defaults to False).
Maxim Neumann's avatar
Maxim Neumann committed
694
    skip_label: Skip examples with given label (defaults to None).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
695
696
  """

Tianqi Liu's avatar
Tianqi Liu committed
697
698
  def __init__(self,
               tfds_params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
699
700
701
               process_text_fn=tokenization.convert_to_unicode):
    super(TfdsProcessor, self).__init__(process_text_fn)
    self._process_tfds_params_str(tfds_params)
702
703
704
    if self.module_import:
      importlib.import_module(self.module_import)

Tianqi Liu's avatar
Tianqi Liu committed
705
706
    self.dataset, info = tfds.load(
        self.dataset_name, data_dir=self.data_dir, with_info=True)
Maxim Neumann's avatar
Maxim Neumann committed
707
708
709
710
    if self.is_regression:
      self._labels = None
    else:
      self._labels = list(range(info.features[self.label_key].num_classes))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
711
712
713

  def _process_tfds_params_str(self, params_str):
    """Extracts TFDS parameters from a comma-separated assignements string."""
Maxim Neumann's avatar
Maxim Neumann committed
714
715
716
    dtype_map = {"int": int, "float": float}
    cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
717
718
719
720
    tuples = [x.split("=") for x in params_str.split(",")]
    d = {k.strip(): v.strip() for k, v in tuples}
    self.dataset_name = d["dataset"]  # Required.
    self.data_dir = d.get("data_dir", None)
721
    self.module_import = d.get("module_import", None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
722
723
724
725
726
727
728
729
730
    self.train_split = d.get("train_split", "train")
    self.dev_split = d.get("dev_split", "validation")
    self.test_split = d.get("test_split", "test")
    self.text_key = d.get("text_key", "text")
    self.text_b_key = d.get("text_b_key", None)
    self.label_key = d.get("label_key", "label")
    self.test_text_key = d.get("test_text_key", self.text_key)
    self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
    self.test_label = d.get("test_label", "test_example")
Maxim Neumann's avatar
Maxim Neumann committed
731
732
    self.label_type = dtype_map[d.get("label_type", "int")]
    self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
Maxim Neumann's avatar
Maxim Neumann committed
733
    self.weight_key = d.get("weight_key", None)
Maxim Neumann's avatar
Maxim Neumann committed
734
735
736
    self.skip_label = d.get("skip_label", None)
    if self.skip_label is not None:
      self.skip_label = self.label_type(self.skip_label)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

  def get_train_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.train_split, "train")

  def get_dev_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.dev_split, "dev")

  def get_test_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.test_split, "test")

  def get_labels(self):
    return self._labels

  def get_processor_name(self):
    return "TFDS_" + self.dataset_name

  def _create_examples(self, split_name, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
757
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
758
759
760
761
    if split_name not in self.dataset:
      raise ValueError("Split {} not available.".format(split_name))
    dataset = self.dataset[split_name].as_numpy_iterator()
    examples = []
Maxim Neumann's avatar
Maxim Neumann committed
762
    text_b, weight = None, None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
763
764
765
766
767
768
769
770
771
772
773
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(example[self.test_text_key])
        if self.test_text_b_key:
          text_b = self.process_text_fn(example[self.test_text_b_key])
        label = self.test_label
      else:
        text_a = self.process_text_fn(example[self.text_key])
        if self.text_b_key:
          text_b = self.process_text_fn(example[self.text_b_key])
Maxim Neumann's avatar
Maxim Neumann committed
774
        label = self.label_type(example[self.label_key])
Maxim Neumann's avatar
Maxim Neumann committed
775
776
        if self.skip_label is not None and label == self.skip_label:
          continue
Maxim Neumann's avatar
Maxim Neumann committed
777
778
      if self.weight_key:
        weight = float(example[self.weight_key])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
779
      examples.append(
Tianqi Liu's avatar
Tianqi Liu committed
780
781
782
783
784
785
          InputExample(
              guid=guid,
              text_a=text_a,
              text_b=text_b,
              label=label,
              weight=weight))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
786
787
788
    return examples


789
790
791
792
793
class WnliProcessor(DataProcessor):
  """Processor for the WNLI data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
794
    return self._create_examples_tfds("train")
795
796
797

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
798
    return self._create_examples_tfds("validation")
799
800
801

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
802
    return self._create_examples_tfds("test")
803
804
805
806
807
808
809
810
811
812

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "WNLI"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
813
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
814
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
815
816
    dataset = tfds.load(
        "glue/wnli", split=set_type, try_gcs=True).as_numpy_iterator()
817
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
818
    for i, example in enumerate(dataset):
819
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
820
821
822
823
824
      label = "0"
      text_a = self.process_text_fn(example["sentence1"])
      text_b = self.process_text_fn(example["sentence2"])
      if set_type != "test":
        label = str(example["label"])
825
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
826
827
828
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
829
830
831
    return examples


832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
class XnliProcessor(DataProcessor):
  """Processor for the XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(XnliProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = XnliProcessor.supported_languages
    elif language not in XnliProcessor.supported_languages:
      raise ValueError("language %s is not supported for XNLI task." % language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      # Skips the header.
      lines.extend(
          self._read_tsv(
              os.path.join(data_dir, "multinli",
                           "multinli.train.%s.tsv" % language))[1:])

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
861
    for i, line in enumerate(lines):
862
863
864
865
866
867
868
869
870
871
872
873
874
875
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      if label == self.process_text_fn("contradictory"):
        label = self.process_text_fn("contradiction")
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
876
    for i, line in enumerate(lines):
877
878
879
880
881
882
883
884
885
886
887
888
889
890
      if i == 0:
        continue
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
    examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
891
    for i, line in enumerate(lines):
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
      if i == 0:
        continue
      guid = "test-%d" % i
      language = self.process_text_fn(line[0])
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples_by_lang[language].append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XNLI"


class XtremePawsxProcessor(DataProcessor):
  """Processor for the XTREME PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

917
918
919
920
921
922
  def __init__(self,
               process_text_fn=tokenization.convert_to_unicode,
               translated_data_dir=None,
               only_use_en_dev=True):
    """See base class.

923
    Args:
924
925
926
927
928
929
930
931
932
933
      process_text_fn: See base class.
      translated_data_dir: If specified, will also include translated data in
        the training and testing data.
      only_use_en_dev: If True, only use english dev data. Otherwise, use dev
        data from all languages.
    """
    super(XtremePawsxProcessor, self).__init__(process_text_fn)
    self.translated_data_dir = translated_data_dir
    self.only_use_en_dev = only_use_en_dev

934
935
936
  def get_train_examples(self, data_dir):
    """See base class."""
    examples = []
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
    if self.translated_data_dir is None:
      lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
      for i, line in enumerate(lines):
        guid = "train-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-train",
                         f"en-{lang}-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"train-{lang}-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = self.process_text_fn(line[4])
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
959
960
961
962
963
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    examples = []
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
    if self.only_use_en_dev:
      lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
      for i, line in enumerate(lines):
        guid = "dev-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
        for i, line in enumerate(lines):
          guid = f"dev-{lang}-{i}"
          text_a = self.process_text_fn(line[0])
          text_b = self.process_text_fn(line[1])
          label = self.process_text_fn(line[2])
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
984
985
986
987
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
988
    examples_by_lang = {}
989
    for lang in self.supported_languages:
990
      examples_by_lang[lang] = []
991
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
992
      for i, line in enumerate(lines):
993
        guid = f"test-{lang}-{i}"
994
995
996
997
998
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "0"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    if self.translated_data_dir is not None:
      for lang in self.supported_languages:
        if lang == "en":
          continue
        examples_by_lang[f"{lang}-en"] = []
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-test",
                         f"test-{lang}-en-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"test-{lang}-en-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = "0"
          examples_by_lang[f"{lang}-en"].append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-PAWS-X"


class XtremeXnliProcessor(DataProcessor):
  """Processor for the XTREME XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

1034
1035
1036
1037
1038
1039
  def __init__(self,
               process_text_fn=tokenization.convert_to_unicode,
               translated_data_dir=None,
               only_use_en_dev=True):
    """See base class.

1040
    Args:
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
      process_text_fn: See base class.
      translated_data_dir: If specified, will also include translated data in
        the training data.
      only_use_en_dev: If True, only use english dev data. Otherwise, use dev
        data from all languages.
    """
    super(XtremeXnliProcessor, self).__init__(process_text_fn)
    self.translated_data_dir = translated_data_dir
    self.only_use_en_dev = only_use_en_dev

1051
1052
1053
1054
1055
  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))

    examples = []
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    if self.translated_data_dir is None:
      for i, line in enumerate(lines):
        guid = "train-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        if label == self.process_text_fn("contradictory"):
          label = self.process_text_fn("contradiction")
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-train",
                         f"en-{lang}-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"train-{lang}-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = self.process_text_fn(line[4])
          if label == self.process_text_fn("contradictory"):
            label = self.process_text_fn("contradiction")
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1081
1082
1083
1084
1085
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    examples = []
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
    if self.only_use_en_dev:
      lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
      for i, line in enumerate(lines):
        guid = "dev-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
        for i, line in enumerate(lines):
          guid = f"dev-{lang}-{i}"
          text_a = self.process_text_fn(line[0])
          text_b = self.process_text_fn(line[1])
          label = self.process_text_fn(line[2])
          if label == self.process_text_fn("contradictory"):
            label = self.process_text_fn("contradiction")
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1108
1109
1110
1111
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
1112
    examples_by_lang = {}
1113
    for lang in self.supported_languages:
1114
      examples_by_lang[lang] = []
1115
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1116
      for i, line in enumerate(lines):
1117
        guid = f"test-{lang}-{i}"
1118
1119
1120
1121
1122
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "contradiction"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
    if self.translated_data_dir is not None:
      for lang in self.supported_languages:
        if lang == "en":
          continue
        examples_by_lang[f"{lang}-en"] = []
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-test",
                         f"test-{lang}-en-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"test-{lang}-en-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = "contradiction"
          examples_by_lang[f"{lang}-en"].append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-XNLI"


1151
1152
1153
1154
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""
  label_map = {}
Maxim Neumann's avatar
Maxim Neumann committed
1155
1156
1157
  if label_list:
    for (i, label) in enumerate(label_list):
      label_map[label] = i
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

  tokens_a = tokenizer.tokenize(example.text_a)
  tokens_b = None
  if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)

  if tokens_b:
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
  else:
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens_a) > max_seq_length - 2:
      tokens_a = tokens_a[0:(max_seq_length - 2)]

1174
1175
1176
1177
1178
  seg_id_a = 0
  seg_id_b = 1
  seg_id_cls = 0
  seg_id_pad = 0

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
  # The convention in BERT is:
  # (a) For sequence pairs:
  #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
  #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
  # (b) For single sequences:
  #  tokens:   [CLS] the dog is hairy . [SEP]
  #  type_ids: 0     0   0   0  0     0 0
  #
  # Where "type_ids" are used to indicate whether this is the first
  # sequence or the second sequence. The embedding vectors for `type=0` and
  # `type=1` were learned during pre-training and are added to the wordpiece
  # embedding vector (and position vector). This is not *strictly* necessary
  # since the [SEP] token unambiguously separates the sequences, but it makes
  # it easier for the model to learn the concept of sequences.
  #
  # For classification tasks, the first vector (corresponding to [CLS]) is
  # used as the "sentence vector". Note that this only makes sense because
  # the entire model is fine-tuned.
  tokens = []
  segment_ids = []
  tokens.append("[CLS]")
1200
  segment_ids.append(seg_id_cls)
1201
1202
  for token in tokens_a:
    tokens.append(token)
1203
    segment_ids.append(seg_id_a)
1204
  tokens.append("[SEP]")
1205
  segment_ids.append(seg_id_a)
1206
1207
1208
1209

  if tokens_b:
    for token in tokens_b:
      tokens.append(token)
1210
      segment_ids.append(seg_id_b)
1211
    tokens.append("[SEP]")
1212
    segment_ids.append(seg_id_b)
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

  input_ids = tokenizer.convert_tokens_to_ids(tokens)

  # The mask has 1 for real tokens and 0 for padding tokens. Only real
  # tokens are attended to.
  input_mask = [1] * len(input_ids)

  # Zero-pad up to the sequence length.
  while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
1224
    segment_ids.append(seg_id_pad)
1225
1226
1227
1228
1229

  assert len(input_ids) == max_seq_length
  assert len(input_mask) == max_seq_length
  assert len(segment_ids) == max_seq_length

Maxim Neumann's avatar
Maxim Neumann committed
1230
  label_id = label_map[example.label] if label_map else example.label
1231
1232
  if ex_index < 5:
    logging.info("*** Example ***")
1233
1234
1235
1236
1237
1238
    logging.info("guid: %s", (example.guid))
    logging.info("tokens: %s",
                 " ".join([tokenization.printable_text(x) for x in tokens]))
    logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
    logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
    logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1239
    logging.info("label: %s (id = %s)", example.label, str(label_id))
Maxim Neumann's avatar
Maxim Neumann committed
1240
    logging.info("weight: %s", example.weight)
Chen Chen's avatar
Chen Chen committed
1241
    logging.info("example_id: %s", example.example_id)
1242
1243
1244
1245
1246
1247

  feature = InputFeatures(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      label_id=label_id,
Maxim Neumann's avatar
Maxim Neumann committed
1248
      is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1249
      weight=example.weight,
Chen Chen's avatar
Chen Chen committed
1250
      example_id=example.example_id)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1251

1252
1253
1254
  return feature


stephenwu's avatar
stephenwu committed
1255
class AXgProcessor(DataProcessor):
stephenwu's avatar
stephenwu committed
1256
  """Processor for the AXg dataset (SuperGLUE diagnostics dataset)."""
stephenwu's avatar
stephenwu committed
1257
1258
1259
1260

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
stephenwu's avatar
stephenwu committed
1261
        self._read_jsonl(os.path.join(data_dir, "AX-g.jsonl")), "test")
stephenwu's avatar
stephenwu committed
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

  def get_labels(self):
    """See base class."""
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "AXg"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    for line in lines:
1276
      guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
stephenwu's avatar
stephenwu committed
1277
1278
      text_a = self.process_text_fn(line["premise"])
      text_b = self.process_text_fn(line["hypothesis"])
stephenwu's avatar
stephenwu committed
1279
1280
1281
1282
      label = self.process_text_fn(line["label"])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
1283

1284

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1285
1286
class SuperGLUEDataProcessor(DataProcessor):
  """Processor for the SuperGLUE dataset."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1287
1288
1289

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1290
    return self._create_examples_tfds("train")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1291
1292
1293

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1294
    return self._create_examples_tfds("validation")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1295
1296
1297

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1298
    return self._create_examples_tfds("test")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1299

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1300
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1301
1302
1303
1304
1305
1306
1307
    """Creates examples for the training/dev/test sets."""
    raise NotImplementedError()


class BoolQProcessor(SuperGLUEDataProcessor):
  """Processor for the BoolQ dataset (SuperGLUE diagnostics dataset)."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1308
1309
1310
1311
1312
1313
1314
1315
1316
  def get_labels(self):
    """See base class."""
    return ["True", "False"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "BoolQ"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1317
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1318
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1319
1320
    dataset = tfds.load(
        "super_glue/boolq", split=set_type, try_gcs=True).as_numpy_iterator()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1321
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1322
1323
1324
1325
1326
1327
1328
    for example in dataset:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
      text_a = self.process_text_fn(example["question"])
      text_b = self.process_text_fn(example["passage"])
      label = "False"
      if set_type != "test":
        label = self.get_labels()[example["label"]]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1329
1330
1331
1332
1333
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1334
class CBProcessor(SuperGLUEDataProcessor):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
  """Processor for the CB dataset (SuperGLUE diagnostics dataset)."""

  def get_labels(self):
    """See base class."""
    return ["entailment", "neutral", "contradiction"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "CB"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1346
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1347
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1348
1349
    dataset = tfds.load(
        "super_glue/cb", split=set_type, try_gcs=True).as_numpy_iterator()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1350
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1351
1352
1353
1354
1355
1356
1357
    for example in dataset:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
      text_a = self.process_text_fn(example["premise"])
      text_b = self.process_text_fn(example["hypothesis"])
      label = "entailment"
      if set_type != "test":
        label = self.get_labels()[example["label"]]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1358
1359
1360
1361
1362
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1363
class SuperGLUERTEProcessor(SuperGLUEDataProcessor):
stephenwu's avatar
stephenwu committed
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
  """Processor for the RTE dataset (SuperGLUE version)."""

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTESuperGLUE"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1377
  def _create_examples_tfds(self, set_type):
stephenwu's avatar
stephenwu committed
1378
1379
    """Creates examples for the training/dev/test sets."""
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
    dataset = tfds.load(
        "super_glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
    for example in dataset:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
      text_a = self.process_text_fn(example["premise"])
      text_b = self.process_text_fn(example["hypothesis"])
      label = "entailment"
      if set_type != "test":
        label = self.get_labels()[example["label"]]
stephenwu's avatar
stephenwu committed
1389
1390
1391
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
stephenwu's avatar
stephenwu committed
1392

1393

Tianqi Liu's avatar
Tianqi Liu committed
1394
1395
1396
1397
1398
1399
def file_based_convert_examples_to_features(examples,
                                            label_list,
                                            max_seq_length,
                                            tokenizer,
                                            output_file,
                                            label_type=None):
1400
1401
  """Convert a set of `InputExample`s to a TFRecord file."""

1402
  tf.io.gfile.makedirs(os.path.dirname(output_file))
1403
1404
  writer = tf.io.TFRecordWriter(output_file)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1405
  for ex_index, example in enumerate(examples):
1406
    if ex_index % 10000 == 0:
1407
      logging.info("Writing example %d of %d", ex_index, len(examples))
1408
1409
1410
1411
1412
1413
1414

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f
Tianqi Liu's avatar
Tianqi Liu committed
1415

Maxim Neumann's avatar
Maxim Neumann committed
1416
1417
1418
    def create_float_feature(values):
      f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
      return f
1419
1420
1421
1422
1423

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
Maxim Neumann's avatar
Maxim Neumann committed
1424
1425
    if label_type is not None and label_type == float:
      features["label_ids"] = create_float_feature([feature.label_id])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1426
    elif feature.label_id is not None:
Maxim Neumann's avatar
Maxim Neumann committed
1427
      features["label_ids"] = create_int_feature([feature.label_id])
1428
1429
    features["is_real_example"] = create_int_feature(
        [int(feature.is_real_example)])
Maxim Neumann's avatar
Maxim Neumann committed
1430
1431
    if feature.weight is not None:
      features["weight"] = create_float_feature([feature.weight])
Chen Chen's avatar
Chen Chen committed
1432
1433
1434
1435
    if feature.example_id is not None:
      features["example_id"] = create_int_feature([feature.example_id])
    else:
      features["example_id"] = create_int_feature([ex_index])
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
  """Truncates a sequence pair in place to the maximum length."""

  # This is a simple heuristic which will always truncate the longer sequence
  # one token at a time. This makes more sense than truncating an equal percent
  # of tokens from each, since if one sequence is very short then each token
  # that's truncated likely contains more information than a longer sequence.
  while True:
    total_length = len(tokens_a) + len(tokens_b)
    if total_length <= max_length:
      break
    if len(tokens_a) > len(tokens_b):
      tokens_a.pop()
    else:
      tokens_b.pop()


def generate_tf_record_from_data_file(processor,
                                      data_dir,
1461
                                      tokenizer,
1462
1463
                                      train_data_output_path=None,
                                      eval_data_output_path=None,
Tianqi Liu's avatar
Tianqi Liu committed
1464
                                      test_data_output_path=None,
1465
                                      max_seq_length=128):
1466
1467
  """Generates and saves training data into a tf record file.

1468
  Args:
1469
1470
      processor: Input processor object to be used for generating data. Subclass
        of `DataProcessor`.
1471
      data_dir: Directory that contains train/eval/test data to process.
1472
      tokenizer: The tokenizer to be applied on the data.
1473
1474
1475
1476
      train_data_output_path: Output to which processed tf record for training
        will be saved.
      eval_data_output_path: Output to which processed tf record for evaluation
        will be saved.
Tianqi Liu's avatar
Tianqi Liu committed
1477
      test_data_output_path: Output to which processed tf record for testing
Tianqi Liu's avatar
Tianqi Liu committed
1478
1479
        will be saved. Must be a pattern template with {} if processor has
        language specific test data.
1480
1481
1482
1483
1484
1485
1486
1487
1488
      max_seq_length: Maximum sequence length of the to be generated
        training/eval data.

  Returns:
      A dictionary containing input meta data.
  """
  assert train_data_output_path or eval_data_output_path

  label_list = processor.get_labels()
Maxim Neumann's avatar
Maxim Neumann committed
1489
1490
  label_type = getattr(processor, "label_type", None)
  is_regression = getattr(processor, "is_regression", False)
Maxim Neumann's avatar
Maxim Neumann committed
1491
  has_sample_weights = getattr(processor, "weight_key", False)
Maxim Neumann's avatar
Maxim Neumann committed
1492

stephenwu's avatar
stephenwu committed
1493
1494
1495
  num_training_data = 0
  if train_data_output_path:
    train_input_data_examples = processor.get_train_examples(data_dir)
stephenwu's avatar
stephenwu committed
1496
1497
1498
1499
    file_based_convert_examples_to_features(train_input_data_examples,
                                            label_list, max_seq_length,
                                            tokenizer, train_data_output_path,
                                            label_type)
stephenwu's avatar
stephenwu committed
1500
    num_training_data = len(train_input_data_examples)
1501
1502
1503
1504
1505

  if eval_data_output_path:
    eval_input_data_examples = processor.get_dev_examples(data_dir)
    file_based_convert_examples_to_features(eval_input_data_examples,
                                            label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1506
1507
                                            tokenizer, eval_data_output_path,
                                            label_type)
1508

1509
1510
1511
1512
1513
1514
  meta_data = {
      "processor_type": processor.get_processor_name(),
      "train_data_size": num_training_data,
      "max_seq_length": max_seq_length,
  }

Tianqi Liu's avatar
Tianqi Liu committed
1515
1516
1517
1518
1519
  if test_data_output_path:
    test_input_data_examples = processor.get_test_examples(data_dir)
    if isinstance(test_input_data_examples, dict):
      for language, examples in test_input_data_examples.items():
        file_based_convert_examples_to_features(
Tianqi Liu's avatar
Tianqi Liu committed
1520
1521
            examples, label_list, max_seq_length, tokenizer,
            test_data_output_path.format(language), label_type)
1522
        meta_data["test_{}_data_size".format(language)] = len(examples)
Tianqi Liu's avatar
Tianqi Liu committed
1523
1524
1525
    else:
      file_based_convert_examples_to_features(test_input_data_examples,
                                              label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1526
1527
                                              tokenizer, test_data_output_path,
                                              label_type)
1528
      meta_data["test_data_size"] = len(test_input_data_examples)
Tianqi Liu's avatar
Tianqi Liu committed
1529

Maxim Neumann's avatar
Maxim Neumann committed
1530
1531
1532
1533
1534
1535
  if is_regression:
    meta_data["task_type"] = "bert_regression"
    meta_data["label_type"] = {int: "int", float: "float"}[label_type]
  else:
    meta_data["task_type"] = "bert_classification"
    meta_data["num_labels"] = len(processor.get_labels())
Maxim Neumann's avatar
Maxim Neumann committed
1536
1537
  if has_sample_weights:
    meta_data["has_sample_weights"] = True
1538
1539
1540
1541
1542

  if eval_data_output_path:
    meta_data["eval_data_size"] = len(eval_input_data_examples)

  return meta_data