classifier_data_lib.py 44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT library to process data for classification task."""

import collections
import csv
19
import importlib
20
21
22
23
import os

from absl import logging
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
import tensorflow_datasets as tfds
25

26
from official.nlp.bert import tokenization
27
28
29


class InputExample(object):
30
  """A single training/test example for simple seq regression/classification."""
31

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
33
34
35
36
37
  def __init__(self,
               guid,
               text_a,
               text_b=None,
               label=None,
               weight=None,
Chen Chen's avatar
Chen Chen committed
38
               example_id=None):
39
40
41
42
43
44
45
46
    """Constructs a InputExample.

    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
47
48
49
      label: (Optional) string for classification, float for regression. The
        label of the example. This should be specified for train and dev
        examples, but not for test examples.
Maxim Neumann's avatar
Maxim Neumann committed
50
51
      weight: (Optional) float. The weight of the example to be used during
        training.
Chen Chen's avatar
Chen Chen committed
52
53
      example_id: (Optional) int. The int identification number of example in
        the corpus.
54
55
56
57
58
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label
Maxim Neumann's avatar
Maxim Neumann committed
59
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
60
    self.example_id = example_id
61
62
63
64
65
66
67
68
69
70


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               input_ids,
               input_mask,
               segment_ids,
               label_id,
Maxim Neumann's avatar
Maxim Neumann committed
71
               is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
               weight=None,
Chen Chen's avatar
Chen Chen committed
73
               example_id=None):
74
75
76
77
78
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.label_id = label_id
    self.is_real_example = is_real_example
Maxim Neumann's avatar
Maxim Neumann committed
79
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
80
    self.example_id = example_id
81
82
83


class DataProcessor(object):
84
  """Base class for converters for seq regression/classification datasets."""
85

86
87
  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    self.process_text_fn = process_text_fn
88
89
    self.is_regression = False
    self.label_type = None
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

  def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

  def get_test_examples(self, data_dir):
    """Gets a collection of `InputExample`s for prediction."""
    raise NotImplementedError()

  def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

  @staticmethod
  def get_processor_name():
    """Gets the string identifier of the processor."""
    raise NotImplementedError()

  @classmethod
  def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    with tf.io.gfile.GFile(input_file, "r") as f:
      reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
      lines = []
      for line in reader:
        lines.append(line)
      return lines


Vincent Etter's avatar
Vincent Etter committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
class AxProcessor(DataProcessor):
  """Processor for the AX dataset (GLUE diagnostics dataset)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "AX"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    text_a_index = 1 if set_type == "test" else 8
    text_b_index = 2 if set_type == "test" else 9
    examples = []
    for i, line in enumerate(lines):
      # Skip header.
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
      text_a = self.process_text_fn(line[text_a_index])
      text_b = self.process_text_fn(line[text_b_index])
      if set_type == "test":
        label = "contradiction"
      else:
        label = self.process_text_fn(line[-1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


171
172
class ColaProcessor(DataProcessor):
  """Processor for the CoLA data set (GLUE version)."""
173
174
175

  def get_train_examples(self, data_dir):
    """See base class."""
176
177
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
178
179
180

  def get_dev_examples(self, data_dir):
    """See base class."""
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "COLA"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
199
    """Creates examples for the training/dev/test sets."""
200
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201
202
    for i, line in enumerate(lines):
      # Only the test set has a header.
203
      if set_type == "test" and i == 0:
204
        continue
205
206
207
208
209
210
211
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(line[1])
        label = "0"
      else:
        text_a = self.process_text_fn(line[3])
        label = self.process_text_fn(line[1])
212
      examples.append(
213
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
214
215
    return examples

216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
class ImdbProcessor(DataProcessor):
  """Processor for the IMDb dataset."""

  def get_labels(self):
    return ["neg", "pos"]

  def get_train_examples(self, data_dir):
    return self._create_examples(os.path.join(data_dir, "train"))

  def get_dev_examples(self, data_dir):
    return self._create_examples(os.path.join(data_dir, "test"))

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "IMDB"

  def _create_examples(self, data_dir):
    """Creates examples."""
    examples = []
    for label in ["neg", "pos"]:
      cur_dir = os.path.join(data_dir, label)
      for filename in tf.io.gfile.listdir(cur_dir):
        if not filename.endswith("txt"):
          continue

        if len(examples) % 1000 == 0:
          logging.info("Loading dev example %d", len(examples))

        path = os.path.join(cur_dir, filename)
        with tf.io.gfile.GFile(path, "r") as f:
          text = f.read().strip().replace("<br />", " ")
        examples.append(
            InputExample(
                guid="unused_id", text_a=text, text_b=None, label=label))
    return examples


255
256
257
class MnliProcessor(DataProcessor):
  """Processor for the MultiNLI data set (GLUE version)."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
258
259
260
261
262
263
264
265
  def __init__(self,
               mnli_type="matched",
               process_text_fn=tokenization.convert_to_unicode):
    super(MnliProcessor, self).__init__(process_text_fn)
    if mnli_type not in ("matched", "mismatched"):
      raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
    self.mnli_type = mnli_type

266
267
268
269
270
271
272
  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
273
274
275
276
277
278
279
280
    if self.mnli_type == "matched":
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
          "dev_matched")
    else:
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")),
          "dev_mismatched")
281

Tianqi Liu's avatar
Tianqi Liu committed
282
283
  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
284
285
286
287
288
289
    if self.mnli_type == "matched":
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test")
    else:
      return self._create_examples(
          self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test")
Tianqi Liu's avatar
Tianqi Liu committed
290

291
292
293
294
295
296
297
  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
298
    return "MNLI"
Tianqi Liu's avatar
Tianqi Liu committed
299

300
  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
301
    """Creates examples for the training/dev/test sets."""
Tianqi Liu's avatar
Tianqi Liu committed
302
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
303
    for i, line in enumerate(lines):
304
305
306
307
308
309
310
311
312
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, self.process_text_fn(line[0]))
      text_a = self.process_text_fn(line[8])
      text_b = self.process_text_fn(line[9])
      if set_type == "test":
        label = "contradiction"
      else:
        label = self.process_text_fn(line[-1])
Tianqi Liu's avatar
Tianqi Liu committed
313
314
315
316
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

317
318
319
320
321
322
323
324
325

class MrpcProcessor(DataProcessor):
  """Processor for the MRPC data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

Tianqi Liu's avatar
Tianqi Liu committed
326
327
  def get_dev_examples(self, data_dir):
    """See base class."""
328
329
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
Tianqi Liu's avatar
Tianqi Liu committed
330
331
332

  def get_test_examples(self, data_dir):
    """See base class."""
333
334
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
Tianqi Liu's avatar
Tianqi Liu committed
335
336
337

  def get_labels(self):
    """See base class."""
338
    return ["0", "1"]
Tianqi Liu's avatar
Tianqi Liu committed
339
340
341
342

  @staticmethod
  def get_processor_name():
    """See base class."""
343
344
345
    return "MRPC"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
346
    """Creates examples for the training/dev/test sets."""
347
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
348
    for i, line in enumerate(lines):
349
350
351
352
353
354
355
356
357
358
359
360
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = self.process_text_fn(line[3])
      text_b = self.process_text_fn(line[4])
      if set_type == "test":
        label = "0"
      else:
        label = self.process_text_fn(line[0])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
Tianqi Liu's avatar
Tianqi Liu committed
361
362
363
364
365
366


class PawsxProcessor(DataProcessor):
  """Processor for the PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

Tianqi Liu's avatar
Tianqi Liu committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(PawsxProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = PawsxProcessor.supported_languages
    elif language not in PawsxProcessor.supported_languages:
      raise ValueError("language %s is not supported for PAWS-X task." %
                       language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      if language == "en":
        train_tsv = "train.tsv"
      else:
        train_tsv = "translated_train.tsv"
      # Skips the header.
      lines.extend(
Tianqi Liu's avatar
Tianqi Liu committed
389
          self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
390
391

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
392
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
393
394
395
396
397
398
399
400
401
402
403
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = []
Tianqi Liu's avatar
Tianqi Liu committed
404
    for lang in PawsxProcessor.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
405
406
      lines.extend(
          self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
407
408

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
409
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
410
      guid = "dev-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
411
412
413
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
414
415
416
417
418
419
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
420
421
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
422
      lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
423
      for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
424
        guid = "test-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
425
426
427
        text_a = self.process_text_fn(line[1])
        text_b = self.process_text_fn(line[2])
        label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
428
        examples_by_lang[lang].append(
Tianqi Liu's avatar
Tianqi Liu committed
429
430
431
432
433
434
435
436
437
438
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
439
440
441
    return "XTREME-PAWS-X"


442
443
class QnliProcessor(DataProcessor):
  """Processor for the QNLI data set (GLUE version)."""
Saurabh Saxena's avatar
Saurabh Saxena committed
444
445
446
447
448
449
450
451
452

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
453
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched")
Saurabh Saxena's avatar
Saurabh Saxena committed
454
455
456
457
458
459
460
461

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
462
    return ["entailment", "not_entailment"]
Saurabh Saxena's avatar
Saurabh Saxena committed
463
464
465
466

  @staticmethod
  def get_processor_name():
    """See base class."""
467
    return "QNLI"
Saurabh Saxena's avatar
Saurabh Saxena committed
468
469

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
470
    """Creates examples for the training/dev/test sets."""
Saurabh Saxena's avatar
Saurabh Saxena committed
471
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
472
    for i, line in enumerate(lines):
Saurabh Saxena's avatar
Saurabh Saxena committed
473
474
      if i == 0:
        continue
475
476
477
478
479
480
481
482
483
      guid = "%s-%s" % (set_type, 1)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = "entailment"
      else:
        text_a = tokenization.convert_to_unicode(line[1])
        text_b = tokenization.convert_to_unicode(line[2])
        label = tokenization.convert_to_unicode(line[-1])
Tianqi Liu's avatar
Tianqi Liu committed
484
485
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
Saurabh Saxena's avatar
Saurabh Saxena committed
486
487
488
    return examples


489
490
class QqpProcessor(DataProcessor):
  """Processor for the QQP data set (GLUE version)."""
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
514
    return "QQP"
515
516

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
517
    """Creates examples for the training/dev/test sets."""
518
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
519
    for i, line in enumerate(lines):
520
521
522
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, line[0])
523
524
525
526
527
528
529
530
531
532
533
534
      if set_type == "test":
        text_a = line[1]
        text_b = line[2]
        label = "0"
      else:
        # There appear to be some garbage lines in the train dataset.
        try:
          text_a = line[3]
          text_b = line[4]
          label = line[5]
        except IndexError:
          continue
535
      examples.append(
536
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
537
538
539
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
class RteProcessor(DataProcessor):
  """Processor for the RTE data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTE"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
570
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
571
572
573
574
575
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
576
577
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
578
579
580
581
582
583
584
585
586
      if set_type == "test":
        label = "entailment"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
class SstProcessor(DataProcessor):
  """Processor for the SST-2 data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "SST-2"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
615
    """Creates examples for the training/dev/test sets."""
616
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
617
    for i, line in enumerate(lines):
618
619
620
621
622
623
624
625
626
627
628
629
630
631
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = tokenization.convert_to_unicode(line[1])
        label = "0"
      else:
        text_a = tokenization.convert_to_unicode(line[0])
        label = tokenization.convert_to_unicode(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
    return examples


632
633
634
635
636
637
638
639
class StsBProcessor(DataProcessor):
  """Processor for the STS-B data set (GLUE version)."""

  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
    self.is_regression = True
    self.label_type = float
    self._labels = None
640
641
642
643
644
645
646
647
648

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
649
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
650
651
652
653
654
655
656
657

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
658
    return self._labels
659
660
661
662

  @staticmethod
  def get_processor_name():
    """See base class."""
663
    return "STS-B"
664
665

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
666
    """Creates examples for the training/dev/test sets."""
667
    examples = []
668
    for i, line in enumerate(lines):
669
670
      if i == 0:
        continue
671
672
673
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[7])
      text_b = tokenization.convert_to_unicode(line[8])
674
      if set_type == "test":
675
        label = 0.0
676
      else:
677
        label = self.label_type(tokenization.convert_to_unicode(line[9]))
678
679
680
681
682
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
683
class TfdsProcessor(DataProcessor):
Maxim Neumann's avatar
Maxim Neumann committed
684
  """Processor for generic text classification and regression TFDS data set.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
685
686
687
688
689
690
691
692
693
694

  The TFDS parameters are expected to be provided in the tfds_params string, in
  a comma-separated list of parameter assignments.
  Examples:
    tfds_params="dataset=scicite,text_key=string"
    tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
    tfds_params="dataset=glue/cola,text_key=sentence"
    tfds_params="dataset=glue/sst2,text_key=sentence"
    tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
    tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
Maxim Neumann's avatar
Maxim Neumann committed
695
696
    tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
                "is_regression=true,label_type=float"
Maxim Neumann's avatar
Maxim Neumann committed
697
698
    tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
                "skip_label=-1"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
699
700
701
702
  Possible parameters (please refer to the documentation of Tensorflow Datasets
  (TFDS) for the meaning of individual parameters):
    dataset: Required dataset name (potentially with subset and version number).
    data_dir: Optional TFDS source root directory.
703
    module_import: Optional Dataset module to import.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
704
705
706
707
708
709
710
711
712
    train_split: Name of the train split (defaults to `train`).
    dev_split: Name of the dev split (defaults to `validation`).
    test_split: Name of the test split (defaults to `test`).
    text_key: Key of the text_a feature (defaults to `text`).
    text_b_key: Key of the second text feature if available.
    label_key: Key of the label feature (defaults to `label`).
    test_text_key: Key of the text feature to use in test set.
    test_text_b_key: Key of the second text feature to use in test set.
    test_label: String to be used as the label for all test examples.
Maxim Neumann's avatar
Maxim Neumann committed
713
    label_type: Type of the label key (defaults to `int`).
Maxim Neumann's avatar
Maxim Neumann committed
714
    weight_key: Key of the float sample weight (is not used if not provided).
Maxim Neumann's avatar
Maxim Neumann committed
715
    is_regression: Whether the task is a regression problem (defaults to False).
Maxim Neumann's avatar
Maxim Neumann committed
716
    skip_label: Skip examples with given label (defaults to None).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
717
718
  """

Tianqi Liu's avatar
Tianqi Liu committed
719
720
  def __init__(self,
               tfds_params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
721
722
723
               process_text_fn=tokenization.convert_to_unicode):
    super(TfdsProcessor, self).__init__(process_text_fn)
    self._process_tfds_params_str(tfds_params)
724
725
726
    if self.module_import:
      importlib.import_module(self.module_import)

Tianqi Liu's avatar
Tianqi Liu committed
727
728
    self.dataset, info = tfds.load(
        self.dataset_name, data_dir=self.data_dir, with_info=True)
Maxim Neumann's avatar
Maxim Neumann committed
729
730
731
732
    if self.is_regression:
      self._labels = None
    else:
      self._labels = list(range(info.features[self.label_key].num_classes))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
733
734
735

  def _process_tfds_params_str(self, params_str):
    """Extracts TFDS parameters from a comma-separated assignements string."""
Maxim Neumann's avatar
Maxim Neumann committed
736
737
738
    dtype_map = {"int": int, "float": float}
    cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
739
740
741
742
    tuples = [x.split("=") for x in params_str.split(",")]
    d = {k.strip(): v.strip() for k, v in tuples}
    self.dataset_name = d["dataset"]  # Required.
    self.data_dir = d.get("data_dir", None)
743
    self.module_import = d.get("module_import", None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
744
745
746
747
748
749
750
751
752
    self.train_split = d.get("train_split", "train")
    self.dev_split = d.get("dev_split", "validation")
    self.test_split = d.get("test_split", "test")
    self.text_key = d.get("text_key", "text")
    self.text_b_key = d.get("text_b_key", None)
    self.label_key = d.get("label_key", "label")
    self.test_text_key = d.get("test_text_key", self.text_key)
    self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
    self.test_label = d.get("test_label", "test_example")
Maxim Neumann's avatar
Maxim Neumann committed
753
754
    self.label_type = dtype_map[d.get("label_type", "int")]
    self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
Maxim Neumann's avatar
Maxim Neumann committed
755
    self.weight_key = d.get("weight_key", None)
Maxim Neumann's avatar
Maxim Neumann committed
756
757
758
    self.skip_label = d.get("skip_label", None)
    if self.skip_label is not None:
      self.skip_label = self.label_type(self.skip_label)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

  def get_train_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.train_split, "train")

  def get_dev_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.dev_split, "dev")

  def get_test_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.test_split, "test")

  def get_labels(self):
    return self._labels

  def get_processor_name(self):
    return "TFDS_" + self.dataset_name

  def _create_examples(self, split_name, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
779
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
780
781
782
783
    if split_name not in self.dataset:
      raise ValueError("Split {} not available.".format(split_name))
    dataset = self.dataset[split_name].as_numpy_iterator()
    examples = []
Maxim Neumann's avatar
Maxim Neumann committed
784
    text_b, weight = None, None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
785
786
787
788
789
790
791
792
793
794
795
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(example[self.test_text_key])
        if self.test_text_b_key:
          text_b = self.process_text_fn(example[self.test_text_b_key])
        label = self.test_label
      else:
        text_a = self.process_text_fn(example[self.text_key])
        if self.text_b_key:
          text_b = self.process_text_fn(example[self.text_b_key])
Maxim Neumann's avatar
Maxim Neumann committed
796
        label = self.label_type(example[self.label_key])
Maxim Neumann's avatar
Maxim Neumann committed
797
798
        if self.skip_label is not None and label == self.skip_label:
          continue
Maxim Neumann's avatar
Maxim Neumann committed
799
800
      if self.weight_key:
        weight = float(example[self.weight_key])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
801
      examples.append(
Tianqi Liu's avatar
Tianqi Liu committed
802
803
804
805
806
807
          InputExample(
              guid=guid,
              text_a=text_a,
              text_b=text_b,
              label=label,
              weight=weight))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
808
809
810
    return examples


811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
class WnliProcessor(DataProcessor):
  """Processor for the WNLI data set (GLUE version)."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
        self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "WNLI"

  def _create_examples(self, lines, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
839
    """Creates examples for the training/dev/test sets."""
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
    examples = []
    for i, line in enumerate(lines):
      if i == 0:
        continue
      guid = "%s-%s" % (set_type, i)
      text_a = tokenization.convert_to_unicode(line[1])
      text_b = tokenization.convert_to_unicode(line[2])
      if set_type == "test":
        label = "0"
      else:
        label = tokenization.convert_to_unicode(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
class XnliProcessor(DataProcessor):
  """Processor for the XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(XnliProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = XnliProcessor.supported_languages
    elif language not in XnliProcessor.supported_languages:
      raise ValueError("language %s is not supported for XNLI task." % language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      # Skips the header.
      lines.extend(
          self._read_tsv(
              os.path.join(data_dir, "multinli",
                           "multinli.train.%s.tsv" % language))[1:])

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
885
    for i, line in enumerate(lines):
886
887
888
889
890
891
892
893
894
895
896
897
898
899
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      if label == self.process_text_fn("contradictory"):
        label = self.process_text_fn("contradiction")
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
900
    for i, line in enumerate(lines):
901
902
903
904
905
906
907
908
909
910
911
912
913
914
      if i == 0:
        continue
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
    examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
915
    for i, line in enumerate(lines):
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
      if i == 0:
        continue
      guid = "test-%d" % i
      language = self.process_text_fn(line[0])
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples_by_lang[language].append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XNLI"


class XtremePawsxProcessor(DataProcessor):
  """Processor for the XTREME PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
945
    for i, line in enumerate(lines):
946
947
948
949
950
951
952
953
954
955
956
957
958
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
959
    for i, line in enumerate(lines):
960
961
962
963
964
965
966
967
968
969
970
971
972
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
973
      for i, line in enumerate(lines):
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
        guid = "test-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "0"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-PAWS-X"


class XtremeXnliProcessor(DataProcessor):
  """Processor for the XTREME XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1004
    for i, line in enumerate(lines):
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1017
    for i, line in enumerate(lines):
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1031
      for i, line in enumerate(lines):
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
        guid = f"test-{i}"
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "contradiction"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-XNLI"


1050
1051
1052
1053
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""
  label_map = {}
Maxim Neumann's avatar
Maxim Neumann committed
1054
1055
1056
  if label_list:
    for (i, label) in enumerate(label_list):
      label_map[label] = i
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

  tokens_a = tokenizer.tokenize(example.text_a)
  tokens_b = None
  if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)

  if tokens_b:
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
  else:
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens_a) > max_seq_length - 2:
      tokens_a = tokens_a[0:(max_seq_length - 2)]

1073
1074
1075
1076
1077
  seg_id_a = 0
  seg_id_b = 1
  seg_id_cls = 0
  seg_id_pad = 0

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
  # The convention in BERT is:
  # (a) For sequence pairs:
  #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
  #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
  # (b) For single sequences:
  #  tokens:   [CLS] the dog is hairy . [SEP]
  #  type_ids: 0     0   0   0  0     0 0
  #
  # Where "type_ids" are used to indicate whether this is the first
  # sequence or the second sequence. The embedding vectors for `type=0` and
  # `type=1` were learned during pre-training and are added to the wordpiece
  # embedding vector (and position vector). This is not *strictly* necessary
  # since the [SEP] token unambiguously separates the sequences, but it makes
  # it easier for the model to learn the concept of sequences.
  #
  # For classification tasks, the first vector (corresponding to [CLS]) is
  # used as the "sentence vector". Note that this only makes sense because
  # the entire model is fine-tuned.
  tokens = []
  segment_ids = []
  tokens.append("[CLS]")
1099
  segment_ids.append(seg_id_cls)
1100
1101
  for token in tokens_a:
    tokens.append(token)
1102
    segment_ids.append(seg_id_a)
1103
  tokens.append("[SEP]")
1104
  segment_ids.append(seg_id_a)
1105
1106
1107
1108

  if tokens_b:
    for token in tokens_b:
      tokens.append(token)
1109
      segment_ids.append(seg_id_b)
1110
    tokens.append("[SEP]")
1111
    segment_ids.append(seg_id_b)
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122

  input_ids = tokenizer.convert_tokens_to_ids(tokens)

  # The mask has 1 for real tokens and 0 for padding tokens. Only real
  # tokens are attended to.
  input_mask = [1] * len(input_ids)

  # Zero-pad up to the sequence length.
  while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
1123
    segment_ids.append(seg_id_pad)
1124
1125
1126
1127
1128

  assert len(input_ids) == max_seq_length
  assert len(input_mask) == max_seq_length
  assert len(segment_ids) == max_seq_length

Maxim Neumann's avatar
Maxim Neumann committed
1129
  label_id = label_map[example.label] if label_map else example.label
1130
1131
  if ex_index < 5:
    logging.info("*** Example ***")
1132
1133
1134
1135
1136
1137
    logging.info("guid: %s", (example.guid))
    logging.info("tokens: %s",
                 " ".join([tokenization.printable_text(x) for x in tokens]))
    logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
    logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
    logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1138
    logging.info("label: %s (id = %s)", example.label, str(label_id))
Maxim Neumann's avatar
Maxim Neumann committed
1139
    logging.info("weight: %s", example.weight)
Chen Chen's avatar
Chen Chen committed
1140
    logging.info("example_id: %s", example.example_id)
1141
1142
1143
1144
1145
1146

  feature = InputFeatures(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      label_id=label_id,
Maxim Neumann's avatar
Maxim Neumann committed
1147
      is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1148
      weight=example.weight,
Chen Chen's avatar
Chen Chen committed
1149
      example_id=example.example_id)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1150

1151
1152
1153
  return feature


Tianqi Liu's avatar
Tianqi Liu committed
1154
1155
1156
1157
1158
1159
def file_based_convert_examples_to_features(examples,
                                            label_list,
                                            max_seq_length,
                                            tokenizer,
                                            output_file,
                                            label_type=None):
1160
1161
  """Convert a set of `InputExample`s to a TFRecord file."""

1162
  tf.io.gfile.makedirs(os.path.dirname(output_file))
1163
1164
  writer = tf.io.TFRecordWriter(output_file)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1165
  for ex_index, example in enumerate(examples):
1166
    if ex_index % 10000 == 0:
1167
      logging.info("Writing example %d of %d", ex_index, len(examples))
1168
1169
1170
1171
1172
1173
1174

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f
Tianqi Liu's avatar
Tianqi Liu committed
1175

Maxim Neumann's avatar
Maxim Neumann committed
1176
1177
1178
    def create_float_feature(values):
      f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
      return f
1179
1180
1181
1182
1183

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
Maxim Neumann's avatar
Maxim Neumann committed
1184
1185
    if label_type is not None and label_type == float:
      features["label_ids"] = create_float_feature([feature.label_id])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1186
    elif feature.label_id is not None:
Maxim Neumann's avatar
Maxim Neumann committed
1187
      features["label_ids"] = create_int_feature([feature.label_id])
1188
1189
    features["is_real_example"] = create_int_feature(
        [int(feature.is_real_example)])
Maxim Neumann's avatar
Maxim Neumann committed
1190
1191
    if feature.weight is not None:
      features["weight"] = create_float_feature([feature.weight])
Chen Chen's avatar
Chen Chen committed
1192
1193
1194
1195
    if feature.example_id is not None:
      features["example_id"] = create_int_feature([feature.example_id])
    else:
      features["example_id"] = create_int_feature([ex_index])
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
  """Truncates a sequence pair in place to the maximum length."""

  # This is a simple heuristic which will always truncate the longer sequence
  # one token at a time. This makes more sense than truncating an equal percent
  # of tokens from each, since if one sequence is very short then each token
  # that's truncated likely contains more information than a longer sequence.
  while True:
    total_length = len(tokens_a) + len(tokens_b)
    if total_length <= max_length:
      break
    if len(tokens_a) > len(tokens_b):
      tokens_a.pop()
    else:
      tokens_b.pop()


def generate_tf_record_from_data_file(processor,
                                      data_dir,
1221
                                      tokenizer,
1222
1223
                                      train_data_output_path=None,
                                      eval_data_output_path=None,
Tianqi Liu's avatar
Tianqi Liu committed
1224
                                      test_data_output_path=None,
1225
                                      max_seq_length=128):
1226
1227
1228
1229
1230
  """Generates and saves training data into a tf record file.

  Arguments:
      processor: Input processor object to be used for generating data. Subclass
        of `DataProcessor`.
1231
      data_dir: Directory that contains train/eval/test data to process.
1232
      tokenizer: The tokenizer to be applied on the data.
1233
1234
1235
1236
      train_data_output_path: Output to which processed tf record for training
        will be saved.
      eval_data_output_path: Output to which processed tf record for evaluation
        will be saved.
Tianqi Liu's avatar
Tianqi Liu committed
1237
      test_data_output_path: Output to which processed tf record for testing
Tianqi Liu's avatar
Tianqi Liu committed
1238
1239
        will be saved. Must be a pattern template with {} if processor has
        language specific test data.
1240
1241
1242
1243
1244
1245
1246
1247
1248
      max_seq_length: Maximum sequence length of the to be generated
        training/eval data.

  Returns:
      A dictionary containing input meta data.
  """
  assert train_data_output_path or eval_data_output_path

  label_list = processor.get_labels()
Maxim Neumann's avatar
Maxim Neumann committed
1249
1250
  label_type = getattr(processor, "label_type", None)
  is_regression = getattr(processor, "is_regression", False)
Maxim Neumann's avatar
Maxim Neumann committed
1251
  has_sample_weights = getattr(processor, "weight_key", False)
1252
  assert train_data_output_path
Maxim Neumann's avatar
Maxim Neumann committed
1253

1254
1255
1256
  train_input_data_examples = processor.get_train_examples(data_dir)
  file_based_convert_examples_to_features(train_input_data_examples, label_list,
                                          max_seq_length, tokenizer,
Tianqi Liu's avatar
Tianqi Liu committed
1257
                                          train_data_output_path, label_type)
1258
1259
1260
1261
1262
1263
  num_training_data = len(train_input_data_examples)

  if eval_data_output_path:
    eval_input_data_examples = processor.get_dev_examples(data_dir)
    file_based_convert_examples_to_features(eval_input_data_examples,
                                            label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1264
1265
                                            tokenizer, eval_data_output_path,
                                            label_type)
1266

1267
1268
1269
1270
1271
1272
  meta_data = {
      "processor_type": processor.get_processor_name(),
      "train_data_size": num_training_data,
      "max_seq_length": max_seq_length,
  }

Tianqi Liu's avatar
Tianqi Liu committed
1273
1274
1275
1276
1277
  if test_data_output_path:
    test_input_data_examples = processor.get_test_examples(data_dir)
    if isinstance(test_input_data_examples, dict):
      for language, examples in test_input_data_examples.items():
        file_based_convert_examples_to_features(
Tianqi Liu's avatar
Tianqi Liu committed
1278
1279
            examples, label_list, max_seq_length, tokenizer,
            test_data_output_path.format(language), label_type)
1280
        meta_data["test_{}_data_size".format(language)] = len(examples)
Tianqi Liu's avatar
Tianqi Liu committed
1281
1282
1283
    else:
      file_based_convert_examples_to_features(test_input_data_examples,
                                              label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1284
1285
                                              tokenizer, test_data_output_path,
                                              label_type)
1286
      meta_data["test_data_size"] = len(test_input_data_examples)
Tianqi Liu's avatar
Tianqi Liu committed
1287

Maxim Neumann's avatar
Maxim Neumann committed
1288
1289
1290
1291
1292
1293
  if is_regression:
    meta_data["task_type"] = "bert_regression"
    meta_data["label_type"] = {int: "int", float: "float"}[label_type]
  else:
    meta_data["task_type"] = "bert_classification"
    meta_data["num_labels"] = len(processor.get_labels())
Maxim Neumann's avatar
Maxim Neumann committed
1294
1295
  if has_sample_weights:
    meta_data["has_sample_weights"] = True
1296
1297
1298
1299
1300

  if eval_data_output_path:
    meta_data["eval_data_size"] = len(eval_input_data_examples)

  return meta_data